BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 28070887)

  • 1. Diversity in the organization of elastin bundles and intramembranous muscles in bat wings.
    Cheney JA; Allen JJ; Swartz SM
    J Anat; 2017 Apr; 230(4):510-523. PubMed ID: 28070887
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A wrinkle in flight: the role of elastin fibres in the mechanical behaviour of bat wing membranes.
    Cheney JA; Konow N; Bearnot A; Swartz SM
    J R Soc Interface; 2015 May; 12(106):. PubMed ID: 25833238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Membrane muscle function in the compliant wings of bats.
    Cheney JA; Konow N; Middleton KM; Breuer KS; Roberts TJ; Giblin EL; Swartz SM
    Bioinspir Biomim; 2014 Jun; 9(2):025007. PubMed ID: 24855069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simplifying a wing: diversity and functional consequences of digital joint reduction in bat wings.
    Bahlman JW; Price-Waldman RM; Lippe HW; Breuer KS; Swartz SM
    J Anat; 2016 Jul; 229(1):114-27. PubMed ID: 26969851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hair, there and everywhere: A comparison of bat wing sensory hair distribution.
    Rummel AD; Sierra MM; Quinn BL; Swartz SM
    Anat Rec (Hoboken); 2023 Nov; 306(11):2681-2692. PubMed ID: 36790015
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Falling with Style: Bats Perform Complex Aerial Rotations by Adjusting Wing Inertia.
    Bergou AJ; Swartz SM; Vejdani H; Riskin DK; Reimnitz L; Taubin G; Breuer KS
    PLoS Biol; 2015; 13(11):e1002297. PubMed ID: 26569116
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of the Hindlimb Membrane Musculature of Bats: Implications for Active Control of the Calcar.
    Stanchak KE; Santana SE
    Anat Rec (Hoboken); 2018 Mar; 301(3):441-448. PubMed ID: 29418120
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bats actively modulate membrane compliance to control camber and reduce drag.
    Cheney JA; Rehm JC; Swartz SM; Breuer KS
    J Exp Biol; 2022 Jul; 225(14):. PubMed ID: 35762250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Quantitative and Comparative Analysis of the Muscle Architecture of the Forelimb Myology of Diurnal Birds of Prey (Order Accipitriformes and Falconiformes).
    Bribiesca-Contreras F; Parslew B; Sellers WI
    Anat Rec (Hoboken); 2019 Oct; 302(10):1808-1823. PubMed ID: 31177616
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inspiration for wing design: how forelimb specialization enables active flight in modern vertebrates.
    Chin DD; Matloff LY; Stowers AK; Tucci ER; Lentink D
    J R Soc Interface; 2017 Jun; 14(131):. PubMed ID: 28592663
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Absorption of visible spectrum radiation by the wing membranes of living pteropodid bats.
    Thomson SC; Speakman JR
    J Comp Physiol B; 1999 Apr; 169(3):187-94. PubMed ID: 10335616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insights into the formation and diversification of a novel chiropteran wing membrane from embryonic development.
    Anthwal N; Urban DJ; Sadier A; Takenaka R; Spiro S; Simmons N; Behringer RR; Cretekos CJ; Rasweiler JJ; Sears KE
    BMC Biol; 2023 May; 21(1):101. PubMed ID: 37143038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bat flight: aerodynamics, kinematics and flight morphology.
    Hedenström A; Johansson LC
    J Exp Biol; 2015 Mar; 218(Pt 5):653-63. PubMed ID: 25740899
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flapping wing aerodynamics: from insects to vertebrates.
    Chin DD; Lentink D
    J Exp Biol; 2016 Apr; 219(Pt 7):920-32. PubMed ID: 27030773
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of wing damage and moult gaps on vertebrate flight performance.
    Hedenström A
    J Exp Biol; 2023 May; 226(9):. PubMed ID: 37132410
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of bat flight: morphologic and molecular evolution of bat wing digits.
    Sears KE; Behringer RR; Rasweiler JJ; Niswander LA
    Proc Natl Acad Sci U S A; 2006 Apr; 103(17):6581-6. PubMed ID: 16618938
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biaxial mechanical characterization of bat wing skin.
    Skulborstad AJ; Swartz SM; Goulbourne NC
    Bioinspir Biomim; 2015 Apr; 10(3):036004. PubMed ID: 25895436
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wing morphology predicts individual niche specialization in Pteronotus mesoamericanus (Mammalia: Chiroptera).
    Magalhães de Oliveira HF; Camargo NF; Hemprich-Bennett DR; Rodríguez-Herrera B; Rossiter SJ; Clare EL
    PLoS One; 2020; 15(5):e0232601. PubMed ID: 32392221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Folding in and out: passive morphing in flapping wings.
    Stowers AK; Lentink D
    Bioinspir Biomim; 2015 Mar; 10(2):025001. PubMed ID: 25807583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The developmental basis of bat wing muscle.
    Tokita M; Abe T; Suzuki K
    Nat Commun; 2012; 3():1302. PubMed ID: 23250432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.