BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 28070907)

  • 1. Analysis of Explosives by GC-UV.
    Andrasko J; Lagesson-Andrasko L; Dahlén J; Jonsson BH
    J Forensic Sci; 2017 Jul; 62(4):1022-1027. PubMed ID: 28070907
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accumulation of explosives in hair--part II: factors affecting sorption.
    Oxley JC; Smith JL; Kirschenbaum LJ; Marimganti S
    J Forensic Sci; 2007 Nov; 52(6):1291-6. PubMed ID: 18093063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generating highly specific spectra and identifying thermal decomposition products via Gas Chromatography / Vacuum Ultraviolet Spectroscopy (GC/VUV): Application to nitrate ester explosives.
    Cruse CA; Goodpaster JV
    Talanta; 2019 Apr; 195():580-586. PubMed ID: 30625586
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of nitroaromatic, nitramine, and nitrate ester explosives in soil by gas chromatography and an electron capture detector.
    Walsh ME
    Talanta; 2001 May; 54(3):427-38. PubMed ID: 18968268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterizing the gas phase ion chemistry of an ion trap mobility spectrometry based explosive trace detector using a tandem mass spectrometer.
    Kozole J; Tomlinson-Phillips J; Stairs JR; Harper JD; Lukow SR; Lareau RT; Boudries H; Lai H; Brauer CS
    Talanta; 2012 Sep; 99():799-810. PubMed ID: 22967626
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solvating gas chromatography with chemiluminescence detection of nitroglycerine and other explosives.
    Bowerbank CR; Smith PA; Fetterolf DD; Lee ML
    J Chromatogr A; 2000 Dec; 902(2):413-9. PubMed ID: 11192173
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of the concentration of explosives in air by isotope dilution analysis.
    St John GA; McReynolds JH; Blucher WG; Scott AC; Anbar M
    Forensic Sci; 1975; 6(1-2):53-66. PubMed ID: 814074
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of Mass Spectrometric Vapor Analysis To Improve Canine Explosive Detection Efficiency.
    Ong TH; Mendum T; Geurtsen G; Kelley J; Ostrinskaya A; Kunz R
    Anal Chem; 2017 Jun; 89(12):6482-6490. PubMed ID: 28598144
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of explosives in hair using ion mobility spectrometry.
    Oxley JC; Smith JL; Kirschenbaum LJ; Marimganti S; Vadlamannati S
    J Forensic Sci; 2008 May; 53(3):690-3. PubMed ID: 18471216
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of SRM 2907 trace terrorist explosives simulants for the detection of Semtex and triacetone triperoxide.
    MacCrehan W; Moore S; Hancock D
    Anal Chem; 2011 Dec; 83(23):9054-9. PubMed ID: 22004378
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ambient pressure laser desorption and laser-induced acoustic desorption ion mobility spectrometry detection of explosives.
    Ehlert S; Walte A; Zimmermann R
    Anal Chem; 2013 Nov; 85(22):11047-53. PubMed ID: 24116702
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental and TD-DFT study of optical absorption of six explosive molecules: RDX, HMX, PETN, TNT, TATP, and HMTD.
    Cooper JK; Grant CD; Zhang JZ
    J Phys Chem A; 2013 Jul; 117(29):6043-51. PubMed ID: 23432018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid, on-site identification of explosives in nanoliter droplets using a UV reflected fiber optic sensor.
    Li X; Li Q; Zhou H; Hao H; Wang T; Zhao S; Lu Y; Huang G
    Anal Chim Acta; 2012 Nov; 751():112-8. PubMed ID: 23084059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A second survey of high explosives traces in public places.
    Cullum HE; McGavigan C; Uttley CZ; Stroud MA; Warren DC
    J Forensic Sci; 2004 Jul; 49(4):684-90. PubMed ID: 15317181
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of triacetone triperoxide with a N,N-dimethyl-p-phenylenediamine sensor on nafion using Fe3O4 magnetic nanoparticles.
    Can Z; Üzer A; Türkekul K; Erçağ E; Apak R
    Anal Chem; 2015 Oct; 87(19):9589-94. PubMed ID: 26356315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous detection and quantification of explosives by a modified hollow cathode discharge ion source.
    Habib A; Bi L; Wen L
    Talanta; 2021 Oct; 233():122596. PubMed ID: 34215084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing a novel contact heater as a new method of recovering explosives traces from porous surfaces.
    Yu HA; Lewis SW; Beardah MS; NicDaeid N
    Talanta; 2016 Feb; 148():721-8. PubMed ID: 26653508
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Potential of Isotope Ratio Mass Spectrometry (IRMS) and Gas Chromatography-IRMS Analysis of Triacetone Triperoxide in Forensic Explosives Investigations.
    Bezemer KD; Koeberg M; van der Heijden AE; van Driel CA; Blaga C; Bruinsma J; van Asten AC
    J Forensic Sci; 2016 Sep; 61(5):1198-207. PubMed ID: 27356279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid and sensitive measurements of nitrate ester explosives using microchip electrophoresis with electrochemical detection.
    Piccin E; Dossi N; Cagan A; Carrilho E; Wang J
    Analyst; 2009 Mar; 134(3):528-32. PubMed ID: 19238290
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accumulation of explosives in hair.
    Oxley JC; Smith JL; Kirschenbaum LJ; Shinde KP; Marimganti S
    J Forensic Sci; 2005 Jul; 50(4):826-31. PubMed ID: 16078483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.