These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 28070969)

  • 21. High-performance Förster resonance energy transfer (FRET)-based dye-sensitized solar cells: rational design of quantum dots for wide solar-spectrum utilization.
    Lee E; Kim C; Jang J
    Chemistry; 2013 Jul; 19(31):10280-6. PubMed ID: 23765414
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Increased Quantum Dot Loading by pH Control Reduces Interfacial Recombination in Quantum-Dot-Sensitized Solar Cells.
    Roelofs KE; Herron SM; Bent SF
    ACS Nano; 2015 Aug; 9(8):8321-34. PubMed ID: 26244426
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Controlling interfacial recombination in aqueous dye-sensitized solar cells by octadecyltrichlorosilane surface treatment.
    Dong C; Xiang W; Huang F; Fu D; Huang W; Bach U; Cheng YB; Li X; Spiccia L
    Angew Chem Int Ed Engl; 2014 Jul; 53(27):6933-7. PubMed ID: 24861499
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantum Dot-Dye Bilayer-Sensitized Solar Cells: Breaking the Limits Imposed by the Low Absorbance of Dye Monolayers.
    Shalom M; Albero J; Tachan Z; Martínez-Ferrero E; Zaban A; Palomares E
    J Phys Chem Lett; 2010 Apr; 1(7):1134-8. PubMed ID: 26701078
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Degradation of cyanoacrylic acid-based organic sensitizers in dye-sensitized solar cells.
    Chen C; Yang X; Cheng M; Zhang F; Sun L
    ChemSusChem; 2013 Jul; 6(7):1270-5. PubMed ID: 23775933
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rapid dye adsorption via surface modification of TiO2 photoanodes for dye-sensitized solar cells.
    Kim B; Park SW; Kim JY; Yoo K; Lee JA; Lee MW; Lee DK; Kim JY; Kim B; Kim H; Han S; Son HJ; Ko MJ
    ACS Appl Mater Interfaces; 2013 Jun; 5(11):5201-7. PubMed ID: 23679678
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Boosting the Photovoltage of Dye-Sensitized Solar Cells with Thiolated Gold Nanoclusters.
    Choi H; Chen YS; Stamplecoskie KG; Kamat PV
    J Phys Chem Lett; 2015 Jan; 6(1):217-23. PubMed ID: 26263116
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparative study on pyrido[3,4-b]pyrazine-based sensitizers by tuning bulky donors for dye-sensitized solar cells.
    Zhang X; Mao J; Wang D; Li X; Yang J; Shen Z; Wu W; Li J; Ågren H; Hua J
    ACS Appl Mater Interfaces; 2015 Feb; 7(4):2760-71. PubMed ID: 25580622
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Efficiency Records in Mesoscopic Dye-Sensitized Solar Cells.
    Albero J; Atienzar P; Corma A; Garcia H
    Chem Rec; 2015 Aug; 15(4):803-28. PubMed ID: 26183911
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quantum dot-sensitized hierarchical micro/nanowire architecture for photoelectrochemical water splitting.
    Sheng W; Sun B; Shi T; Tan X; Peng Z; Liao G
    ACS Nano; 2014 Jul; 8(7):7163-9. PubMed ID: 24941287
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synergistic recombination suppression by an inorganic layer and organic dye molecules in highly photostable quantum dot sensitized solar cells.
    Shen H; Li J; Zhao L; Zhang S; Wang W; Oron D; Lin H
    Phys Chem Chem Phys; 2014 Apr; 16(13):6250-6. PubMed ID: 24569752
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Boosting Photovoltaic Performance of Dye-Sensitized Solar Cells Using Silver Nanoparticle-Decorated N,S-Co-Doped-TiO2 Photoanode.
    Lim SP; Pandikumar A; Lim HN; Ramaraj R; Huang NM
    Sci Rep; 2015 Jul; 5():11922. PubMed ID: 26146362
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Insight into the optoelectronic properties of designed solar cells efficient tetrahydroquinoline dye-sensitizers on TiO
    Roy JK; Kar S; Leszczynski J
    Sci Rep; 2018 Jul; 8(1):10997. PubMed ID: 30030505
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The electronic structure engineering of organic dye sensitizers for solar cells: The case of JK derivatives.
    Zhang CR; Ma JG; Zhe JW; Jin NZ; Shen YL; Wu YZ; Chen YH; Liu ZJ; Chen HS
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Nov; 150():855-66. PubMed ID: 26116996
    [TBL] [Abstract][Full Text] [Related]  

  • 35. On the stability of manganese tris(β-diketonate) complexes as redox mediators in DSSCs.
    Carli S; Benazzi E; Casarin L; Bernardi T; Bertolasi V; Argazzi R; Caramori S; Bignozzi CA
    Phys Chem Chem Phys; 2016 Feb; 18(8):5949-56. PubMed ID: 26751983
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Visible light water splitting using dye-sensitized oxide semiconductors.
    Youngblood WJ; Lee SH; Maeda K; Mallouk TE
    Acc Chem Res; 2009 Dec; 42(12):1966-73. PubMed ID: 19905000
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Efficient dye regeneration at low driving force achieved in triphenylamine dye LEG4 and TEMPO redox mediator based dye-sensitized solar cells.
    Yang W; Vlachopoulos N; Hao Y; Hagfeldt A; Boschloo G
    Phys Chem Chem Phys; 2015 Jun; 17(24):15868-75. PubMed ID: 26016854
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rational Molecular Engineering of Indoline-Based D-A-π-A Organic Sensitizers for Long-Wavelength-Responsive Dye-Sensitized Solar Cells.
    Zhang W; Wu Y; Zhu H; Chai Q; Liu J; Li H; Song X; Zhu WH
    ACS Appl Mater Interfaces; 2015 Dec; 7(48):26802-10. PubMed ID: 26552499
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rapid Dye Regeneration Mechanism of Dye-Sensitized Solar Cells.
    Jeon J; Park YC; Han SS; Goddard WA; Lee YS; Kim H
    J Phys Chem Lett; 2014 Dec; 5(24):4285-90. PubMed ID: 26273975
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cyclometalated ruthenium sensitizers bearing a triphenylamino group for p-type NiO dye-sensitized solar cells.
    Ji Z; Natu G; Wu Y
    ACS Appl Mater Interfaces; 2013 Sep; 5(17):8641-8. PubMed ID: 23927567
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.