These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 28071812)

  • 1. Recovery of aquatic insect-mediated methylmercury flux from ponds following drying disturbance.
    Chumchal MM; Drenner RW; Greenhill FM; Kennedy JH; Courville AE; Gober CAA; Lossau LO
    Environ Toxicol Chem; 2017 Aug; 36(8):1986-1990. PubMed ID: 28071812
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Seasonality of dipteran-mediated methylmercury flux from ponds.
    Chumchal MM; Drenner RW; Hall MN; Polk DK; Williams EB; Ortega-Rodriguez CL; Kennedy JH
    Environ Toxicol Chem; 2018 Jul; 37(7):1846-1851. PubMed ID: 29528144
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Seasonality of odonate-mediated methylmercury flux from permanent and semipermanent ponds and potential risk to red-winged blackbirds (Agelaius phoeniceus).
    Williams EB; Chumchal MM; Drenner RW; Kennedy JH
    Environ Toxicol Chem; 2017 Oct; 36(10):2833-2837. PubMed ID: 28493488
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An environmental problem hidden in plain sight? Small human-made ponds, emergent insects, and mercury contamination of biota in the Great Plains.
    Chumchal MM; Drenner RW
    Environ Toxicol Chem; 2015 Jun; 34(6):1197-205. PubMed ID: 26013117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of fish on emergent insect-mediated flux of methyl mercury across a gradient of contamination.
    Tweedy BN; Drenner RW; Chumchal MM; Kennedy JH
    Environ Sci Technol; 2013 Feb; 47(3):1614-9. PubMed ID: 23286272
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bottom-up nutrient and top-down fish impacts on insect-mediated mercury flux from aquatic ecosystems.
    Jones TA; Chumchal MM; Drenner RW; Timmins GN; Nowlin WH
    Environ Toxicol Chem; 2013 Mar; 32(3):612-8. PubMed ID: 23180684
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Taking the trophic bypass: aquatic-terrestrial linkage reduces methylmercury in a terrestrial food web.
    Bartrons M; Gratton C; Spiesman BJ; Vander Zanden MJ
    Ecol Appl; 2015 Jan; 25(1):151-9. PubMed ID: 26255364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methylmercury production and accumulation in urban stormwater ponds and habitat wetlands.
    Strickman RJ; Mitchell CPJ
    Environ Pollut; 2017 Feb; 221():326-334. PubMed ID: 27939209
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methylmercury cycling in High Arctic wetland ponds: sources and sinks.
    Lehnherr I; St Louis VL; Emmerton CA; Barker JD; Kirk JL
    Environ Sci Technol; 2012 Oct; 46(19):10514-22. PubMed ID: 22779785
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mercury biomagnification in the aquaculture pond ecosystem in the Pearl River Delta.
    Cheng Z; Liang P; Shao DD; Wu SC; Nie XP; Chen KC; Li KB; Wong MH
    Arch Environ Contam Toxicol; 2011 Oct; 61(3):491-9. PubMed ID: 21290120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of Beaver Pond Colonization History on Methylmercury Concentrations in Surface Water.
    Levanoni O; Bishop K; Mckie BG; Hartman G; Eklöf K; Ecke F
    Environ Sci Technol; 2015 Nov; 49(21):12679-87. PubMed ID: 26450629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mercury methylation in stormwater retention ponds at different stages in the management lifecycle.
    Strickman RJ; Mitchell CPJ
    Environ Sci Process Impacts; 2018 Apr; 20(4):595-606. PubMed ID: 29376168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methylmercury cycling in High Arctic wetland ponds: controls on sedimentary production.
    Lehnherr I; St Louis VL; Kirk JL
    Environ Sci Technol; 2012 Oct; 46(19):10523-31. PubMed ID: 22799567
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationship Between Methylmercury Contamination and Proportion of Aquatic and Terrestrial Prey in Diets of Shoreline Spiders.
    Ortega-Rodriguez CL; Chumchal MM; Drenner RW; Kennedy JH; Nowlin WH; Barst BD; Polk DK; Hall MN; Williams EB; Lauck KC; Santa-Rios A; Basu N
    Environ Toxicol Chem; 2019 Nov; 38(11):2503-2508. PubMed ID: 31441959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photodemethylation of Methylmercury in Eastern Canadian Arctic Thaw Pond and Lake Ecosystems.
    Girard C; Leclerc M; Amyot M
    Environ Sci Technol; 2016 Apr; 50(7):3511-20. PubMed ID: 26938195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mercury Distribution Along the Food Chain of a Wetland Ecosystem at Sanjiang Plain, Northeast China.
    Zhilong M; Qiang W; Zhongsheng Z; Xuehong Z
    Bull Environ Contam Toxicol; 2017 Feb; 98(2):162-166. PubMed ID: 27999881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High Methylmercury in Arctic and Subarctic Ponds is Related to Nutrient Levels in the Warming Eastern Canadian Arctic.
    MacMillan GA; Girard C; Chételat J; Laurion I; Amyot M
    Environ Sci Technol; 2015 Jul; 49(13):7743-53. PubMed ID: 26030209
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methyl mercury and stable isotopes of nitrogen reveal that a terrestrial spider has a diet of emergent aquatic insects.
    Speir SL; Chumchal MM; Drenner RW; Cocke WG; Lewis ME; Whitt HJ
    Environ Toxicol Chem; 2014 Nov; 33(11):2506-9. PubMed ID: 25077687
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Burrowing dragonfly larvae as biosentinels of methylmercury in freshwater food webs.
    Haro RJ; Bailey SW; Northwick RM; Rolfhus KR; Sandheinrich MB; Wiener JG
    Environ Sci Technol; 2013 Aug; 47(15):8148-56. PubMed ID: 23845042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preliminary Estimations of Insect Mediated Transfers of Mercury and Physiologically Important Fatty Acids from Water to Land.
    Moyo S
    Biomolecules; 2020 Jan; 10(1):. PubMed ID: 31940985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.