These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 28071892)
1. Transient Adenosine Release Is Modulated by NMDA and GABA Nguyen MD; Wang Y; Ganesana M; Venton BJ ACS Chem Neurosci; 2017 Feb; 8(2):376-385. PubMed ID: 28071892 [TBL] [Abstract][Full Text] [Related]
2. Real-time effects of N-methyl-D-aspartic acid on dopamine release in slices of rat caudate putamen: a study using fast cyclic voltammetry. Iravani MM; Kruk ZL J Neurochem; 1996 Mar; 66(3):1076-85. PubMed ID: 8769869 [TBL] [Abstract][Full Text] [Related]
3. Adenosine transiently modulates stimulated dopamine release in the caudate-putamen via A1 receptors. Ross AE; Venton BJ J Neurochem; 2015 Jan; 132(1):51-60. PubMed ID: 25219576 [TBL] [Abstract][Full Text] [Related]
4. Adenosine receptor-mediated modulation of dopamine release in the nucleus accumbens depends on glutamate neurotransmission and N-methyl-D-aspartate receptor stimulation. Quarta D; Borycz J; Solinas M; Patkar K; Hockemeyer J; Ciruela F; Lluis C; Franco R; Woods AS; Goldberg SR; Ferré S J Neurochem; 2004 Nov; 91(4):873-80. PubMed ID: 15525341 [TBL] [Abstract][Full Text] [Related]
5. Correlation of transient adenosine release and oxygen changes in the caudate-putamen. Wang Y; Venton BJ J Neurochem; 2017 Jan; 140(1):13-23. PubMed ID: 27314215 [TBL] [Abstract][Full Text] [Related]
6. Differential activation of GABAA and GABAB receptors by spontaneously released transmitter. Otis TS; Mody I J Neurophysiol; 1992 Jan; 67(1):227-35. PubMed ID: 1348084 [TBL] [Abstract][Full Text] [Related]
7. The effects of N-methyl-D-aspartate (NMDA) and its competitive antagonist, 3-(2-carboxypiperazine-4-yl)propyl-1-phosphonic acid (CPP), injected into caudate-putamen on kindled amygdaloid seizures in rats. Osonoe M; Mori N; Hoshino S; Yamada Y; Osonoe K; Kittaka H; Iwata Y Brain Res; 1996 Jul; 728(2):242-6. PubMed ID: 8864488 [TBL] [Abstract][Full Text] [Related]
8. The spinal GABA system modulates burst frequency and intersegmental coordination in the lamprey: differential effects of GABAA and GABAB receptors. Tegnér J; Matsushima T; el Manira A; Grillner S J Neurophysiol; 1993 Mar; 69(3):647-57. PubMed ID: 8385187 [TBL] [Abstract][Full Text] [Related]
9. Presynaptic inhibition preferentially reduces in NMDA receptor-mediated component of transmission in rat midbrain dopamine neurons. Wu YN; Shen KZ; Johnson SW Br J Pharmacol; 1999 Jul; 127(6):1422-30. PubMed ID: 10455292 [TBL] [Abstract][Full Text] [Related]
10. Characterization of spontaneous, transient adenosine release in the caudate-putamen and prefrontal cortex. Nguyen MD; Lee ST; Ross AE; Ryals M; Choudhry VI; Venton BJ PLoS One; 2014; 9(1):e87165. PubMed ID: 24494035 [TBL] [Abstract][Full Text] [Related]
11. N-Methyl-d-aspartate Modulation of Nucleus Accumbens Dopamine Release by Metabotropic Glutamate Receptors: Fast Cyclic Voltammetry Studies in Rat Brain Slices in Vitro. Yavas E; Young AM ACS Chem Neurosci; 2017 Feb; 8(2):320-328. PubMed ID: 28121123 [TBL] [Abstract][Full Text] [Related]
12. CPP, a selective N-methyl-D-aspartate (NMDA)-type receptor antagonist: characterization in vitro and in vivo. Lehmann J; Schneider J; McPherson S; Murphy DE; Bernard P; Tsai C; Bennett DA; Pastor G; Steel DJ; Boehm C J Pharmacol Exp Ther; 1987 Mar; 240(3):737-46. PubMed ID: 2882014 [TBL] [Abstract][Full Text] [Related]
13. GABAB receptor-mediated regulation of glutamate-activated calcium transients in hypothalamic and cortical neuron development. Obrietan K; van den Pol AN J Neurophysiol; 1999 Jul; 82(1):94-102. PubMed ID: 10400938 [TBL] [Abstract][Full Text] [Related]
14. Adenosine A2A receptors regulate the extracellular accumulation of excitatory amino acids upon metabolic dysfunction in chick cultured retinal cells. Rego AC; Agostinho P; Melo J; Cunha RA; Oliveira CR Exp Eye Res; 2000 May; 70(5):577-87. PubMed ID: 10870516 [TBL] [Abstract][Full Text] [Related]
15. Adenosine A2A receptors and metabotropic glutamate 5 receptors are co-localized and functionally interact in the hippocampus: a possible key mechanism in the modulation of N-methyl-D-aspartate effects. Tebano MT; Martire A; Rebola N; Pepponi R; Domenici MR; Grò MC; Schwarzschild MA; Chen JF; Cunha RA; Popoli P J Neurochem; 2005 Nov; 95(4):1188-200. PubMed ID: 16271052 [TBL] [Abstract][Full Text] [Related]
16. Contribution of NMDA, GABAA and GABAB receptors and l-arginine-NO-cGMP, MEK1/2 and CaMK-II pathways in the antidepressant-like effect of 7-fluoro-1,3-diphenylisoquinoline-1-amine in mice. Pesarico AP; Stangherlin EC; Rosa SG; Mantovani AC; Zeni G; Nogueira CW Eur J Pharmacol; 2016 Jul; 782():6-13. PubMed ID: 27112660 [TBL] [Abstract][Full Text] [Related]
17. Multiple postsynaptic actions of GABA via GABAB receptors on CA1 pyramidal cells of rat hippocampal slices. Pham TM; Lacaille JC J Neurophysiol; 1996 Jul; 76(1):69-80. PubMed ID: 8836210 [TBL] [Abstract][Full Text] [Related]
18. Characterization of L-glutamate action on the release of endogenous dopamine from the rat caudate-putamen. Clow DW; Jhamandas K J Pharmacol Exp Ther; 1989 Feb; 248(2):722-8. PubMed ID: 2563769 [TBL] [Abstract][Full Text] [Related]
19. Lowered brain stimulation reward thresholds in rats treated with a combination of caffeine and N-methyl-D-aspartate but not alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate or metabotropic glutamate receptor-5 receptor antagonists. Bespalov A; Dravolina O; Belozertseva I; Adamcio B; Zvartau E Behav Pharmacol; 2006 Jun; 17(4):295-302. PubMed ID: 16914947 [TBL] [Abstract][Full Text] [Related]
20. Differential effects of GABAA and GABAB receptor agonists on NMDA-induced and noradrenaline-induced luteinizing-hormone release in the ovariectomized estrogen-primed rat. Akema T; Kimura F Neuroendocrinology; 1993 Jan; 57(1):28-33. PubMed ID: 8097576 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]