These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 28071910)

  • 1. Direct Measurement of the Effect of Cholesterol and 6-Ketocholestanol on the Membrane Dipole Electric Field Using Vibrational Stark Effect Spectroscopy Coupled with Molecular Dynamics Simulations.
    Shrestha R; Anderson CM; Cardenas AE; Elber R; Webb LJ
    J Phys Chem B; 2017 Apr; 121(15):3424-3436. PubMed ID: 28071910
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of oxygenated sterol on phospholipid bilayer properties: a molecular dynamics simulation.
    Smondyrev AM; Berkowitz ML
    Chem Phys Lipids; 2001 Jul; 112(1):31-9. PubMed ID: 11518570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Cholesterol and 6-Ketocholestanol on Membrane Dipole Potential and Sterol Flip-Flop Motion in Bilayer Membranes.
    Shen H; Wu Z; Zhao K; Yang H; Deng M; Wen S
    Langmuir; 2019 Aug; 35(34):11232-11241. PubMed ID: 31373497
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The alteration of lipid bilayer dynamics by phloretin and 6-ketocholestanol.
    Przybylo M; Procek J; Hof M; Langner M
    Chem Phys Lipids; 2014 Feb; 178():38-44. PubMed ID: 24316311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurement of the membrane dipole electric field in DMPC vesicles using vibrational shifts of p-cyanophenylalanine and molecular dynamics simulations.
    Shrestha R; Cardenas AE; Elber R; Webb LJ
    J Phys Chem B; 2015 Feb; 119(7):2869-76. PubMed ID: 25602635
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Cholesterol on Membrane Dipole Potential: Atomistic and Coarse-Grained Molecular Dynamics Simulations.
    Shen H; Deng M; Wu Z; Zhang J; Zhang Y; Gao C; Cen C
    J Chem Theory Comput; 2018 Jul; 14(7):3780-3795. PubMed ID: 29791146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the possibility of the amphotericin B-sterol complex formation in cholesterol- and ergosterol-containing lipid bilayers: a molecular dynamics study.
    Neumann A; Czub J; Baginski M
    J Phys Chem B; 2009 Dec; 113(48):15875-85. PubMed ID: 19929013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative molecular dynamics study of lipid membranes containing cholesterol and ergosterol.
    Czub J; Baginski M
    Biophys J; 2006 Apr; 90(7):2368-82. PubMed ID: 16399829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of the binding of signal peptides to lipid bilayers by dipoles near the hydrocarbon-water interface.
    Voglino L; McIntosh TJ; Simon SA
    Biochemistry; 1998 Sep; 37(35):12241-52. PubMed ID: 9724538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NBD-labeled cholesterol analogues in phospholipid bilayers: insights from molecular dynamics.
    Robalo JR; Ramalho JP; Loura LM
    J Phys Chem B; 2013 Nov; 117(44):13731-42. PubMed ID: 24099120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement of dipole potential in bilayer lipid membranes by dielectric spectroscopy.
    Hidaka Y; Asami K
    J Membr Biol; 2014 Aug; 247(8):721-7. PubMed ID: 24935731
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrafast Fluctuations of High Amplitude Electric Fields in Lipid Membranes.
    Stevenson P; Tokmakoff A
    J Am Chem Soc; 2017 Apr; 139(13):4743-4752. PubMed ID: 28277665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular dynamics simulation of the structure of dimyristoylphosphatidylcholine bilayers with cholesterol, ergosterol, and lanosterol.
    Smondyrev AM; Berkowitz ML
    Biophys J; 2001 Apr; 80(4):1649-58. PubMed ID: 11259280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of the interbilayer hydration pressure by the addition of dipoles at the hydrocarbon/water interface.
    Simon SA; McIntosh TJ; Magid AD; Needham D
    Biophys J; 1992 Mar; 61(3):786-99. PubMed ID: 1504249
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parameterization of a coarse-grained model of cholesterol with point-dipole electrostatics.
    Siani P; Khandelia H; Orsi M; Dias LG
    J Comput Aided Mol Des; 2018 Nov; 32(11):1259-1271. PubMed ID: 30259387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulations of simple Bovine and Homo sapiens outer cortex ocular lens membrane models with a majority concentration of cholesterol.
    Adams M; Wang E; Zhuang X; Klauda JB
    Biochim Biophys Acta Biomembr; 2018 Oct; 1860(10):2134-2144. PubMed ID: 29169746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interface water dynamics and porating electric fields for phospholipid bilayers.
    Ziegler MJ; Vernier PT
    J Phys Chem B; 2008 Oct; 112(43):13588-96. PubMed ID: 18837540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Water order profiles on phospholipid/cholesterol membrane bilayer surfaces.
    Robinson D; Besley NA; O'Shea P; Hirst JD
    J Comput Chem; 2011 Sep; 32(12):2613-8. PubMed ID: 21633961
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cholesterol effect on the dipole potential of lipid membranes.
    Starke-Peterkovic T; Turner N; Vitha MF; Waller MP; Hibbs DE; Clarke RJ
    Biophys J; 2006 Jun; 90(11):4060-70. PubMed ID: 16513788
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential effect of sterols on dipole potential in hippocampal membranes: implications for receptor function.
    Singh P; Haldar S; Chattopadhyay A
    Biochim Biophys Acta; 2013 Mar; 1828(3):917-23. PubMed ID: 23201544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.