BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 28072427)

  • 1. Calorimetric Studies on Thermal Properties of Nano-Cryoprotectant Solutions during Vitrification.
    Xu HF; Hao BT; Liu LJ; Tang LL; Liu BL
    Cryo Letters; 2016; 37(6):406-410. PubMed ID: 28072427
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Devitrification and recrystallization of nanoparticle-containing glycerol and PEG-600 solutions.
    Lv F; Liu B; Li W; Jaganathan GK
    Cryobiology; 2014 Feb; 68(1):84-90. PubMed ID: 24374134
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Effect of hydroxyapatite nanoparticles on MII-stage porcine oocytes vitrification and the study of its mechanism].
    Li W; Zhou X; Dai J; Zhang D; Liu B; Wang H; Xu L
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2013 Aug; 30(4):789-93. PubMed ID: 24059057
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vitrification tendency and stability of DP6-based vitrification solutions for complex tissue cryopreservation.
    Wowk B; Fahy GM; Ahmedyar S; Taylor MJ; Rabin Y
    Cryobiology; 2018 Jun; 82():70-77. PubMed ID: 29660316
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Supercooling and vitrification of aqueous glycerol solutions at normal and high pressures.
    Miyata K; Hayakawa S; Kajiwara K; Kanno H
    Cryobiology; 2012 Oct; 65(2):113-6. PubMed ID: 22609515
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glass transition behavior of the vitrification solutions containing propanediol, dimethyl sulfoxide and polyvinyl alcohol.
    Wang HY; Lu SS; Lun ZR
    Cryobiology; 2009 Feb; 58(1):115-117. PubMed ID: 19026625
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Review of biomaterial thermal property measurements in the cryogenic regime and their use for prediction of equilibrium and non-equilibrium freezing applications in cryobiology.
    Choi J; Bischof JC
    Cryobiology; 2010 Feb; 60(1):52-70. PubMed ID: 19948163
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of hydroxyapatite nanoparticles on the viscosity of dimethyl sulfoxide-H2O-NaCl and glycerol-H2O-NaCl ternary systems at subzero temperatures.
    Yi J; Tang H; Zhao G
    Cryobiology; 2014 Oct; 69(2):291-8. PubMed ID: 25127873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predict the glass transition temperature of glycerol-water binary cryoprotectant by molecular dynamic simulation.
    Li DX; Liu BL; Liu YS; Chen CL
    Cryobiology; 2008 Apr; 56(2):114-9. PubMed ID: 18190903
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydroxyapatite nanoparticles improved survival rate of vitrified porcine oocytes and its mechanism.
    Zhou X; Li W; Zhang D; Dai J
    Cryo Letters; 2015; 36(1):45-50. PubMed ID: 26017172
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermodynamic aspects of vitrification.
    Wowk B
    Cryobiology; 2010 Feb; 60(1):11-22. PubMed ID: 19538955
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal contraction of aqueous glycerol and ethylene glycol solutions for optimized protein-crystal cryoprotection.
    Shen C; Julius EF; Tyree TJ; Moreau DW; Atakisi H; Thorne RE
    Acta Crystallogr D Struct Biol; 2016 Jun; 72(Pt 6):742-52. PubMed ID: 27303794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vitrification enhancement by synthetic ice blocking agents.
    Wowk B; Leitl E; Rasch CM; Mesbah-Karimi N; Harris SB; Fahy GM
    Cryobiology; 2000 May; 40(3):228-36. PubMed ID: 10860622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement of Thermal Conductivities of Two Cryoprotective Agent Solutions for Vitreous Cryopreservation of Organs at the Temperature Range of 77 K-300 K Using a Thermal Sensor Made of Microscale Enamel Copper Wire.
    Li Y; Zhao G; Hossain SMC; Panhwar F; Sun W; Kong F; Zang C; Jiang Z
    Biopreserv Biobank; 2017 Jun; 15(3):228-233. PubMed ID: 28051325
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DSC Analysis of Thermophysical Properties for Biomaterials and Formulations.
    Sun WQ
    Methods Mol Biol; 2021; 2180():285-302. PubMed ID: 32797416
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Supplemented phase diagrams for vitrification CPA cocktails: DP6, VS55 and M22.
    Han Z; Gangwar L; Magnuson E; Etheridge ML; Pringle CO; Bischof JC; Choi J
    Cryobiology; 2022 Jun; 106():113-121. PubMed ID: 35276219
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermodynamic nonequilibrium phase change behavior and thermal properties of biological solutions for cryobiology applications.
    Han B; Bischof JC
    J Biomech Eng; 2004 Apr; 126(2):196-203. PubMed ID: 15179849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cryopreservation of the ovary by vitrification as an alternative to slow-cooling protocols.
    Courbiere B; Odagescu V; Baudot A; Massardier J; Mazoyer C; Salle B; Lornage J
    Fertil Steril; 2006 Oct; 86(4 Suppl):1243-51. PubMed ID: 16978623
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cryopreservation of Kalopanax septemlobus embryogenic callus using vitrification and droplet-vitrification.
    Shin DJ; Kong H; Popova EV; Moon HK; Park SY; Park SU; Lee SC; Kim HH
    Cryo Letters; 2012; 33(5):402-10. PubMed ID: 23224373
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A refinement to the liquidus-tracking method for vitreous preservation of articular cartilage.
    Yu XY; Chen GM; Zhang SZ
    Cryo Letters; 2013; 34(3):267-76. PubMed ID: 23812317
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.