BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 28072433)

  • 1. Effects of Superparamagnetic Nanoparticles on Nucleation and Crystal Growth in the Vitrified VS55 During Warming.
    Xu Y; Yu HM; Niu YQ; Luo SC; Cheng X
    Cryo Letters; 2016; 37(6):448-454. PubMed ID: 28072433
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of Specific Heat and Crystallization in VS55, DP6, and M22 Cryoprotectant Systems With and Without Sucrose.
    Phatak S; Natesan H; Choi J; Brockbank KGM; Bischof JC
    Biopreserv Biobank; 2018 Aug; 16(4):270-277. PubMed ID: 29958001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of rapid cooling on articular cartilage.
    Guan J; Urban JP; Li ZH; Ferguson DJ; Gong CY; Cui ZF
    Cryobiology; 2006 Jun; 52(3):430-9. PubMed ID: 16620806
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal analysis of marginal conditions to facilitate cryopreservation by vitrification using a semi-empirical approach.
    Joshi P; Rabin Y
    Cryobiology; 2019 Dec; 91():128-136. PubMed ID: 31526802
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vitrification of porcine articular cartilage.
    Brockbank KG; Chen ZZ; Song YC
    Cryobiology; 2010 Apr; 60(2):217-21. PubMed ID: 20026102
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved tissue cryopreservation using inductive heating of magnetic nanoparticles.
    Manuchehrabadi N; Gao Z; Zhang J; Ring HL; Shao Q; Liu F; McDermott M; Fok A; Rabin Y; Brockbank KG; Garwood M; Haynes CL; Bischof JC
    Sci Transl Med; 2017 Mar; 9(379):. PubMed ID: 28251904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal expansion of blood vessels in low cryogenic temperatures, Part II: Vitrification with VS55, DP6, and 7.05 M DMSO.
    Rios JL; Rabin Y
    Cryobiology; 2006 Apr; 52(2):284-94. PubMed ID: 16488407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the assessment of the stability of vitrified cryo-media by differential scanning calorimetry: A new tool for biobanks to derive standard operating procedures for storage, access and transport.
    Kreiner A; Stracke F; Zimmermann H
    Cryobiology; 2019 Aug; 89():26-34. PubMed ID: 31202961
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A guide to successful mL to L scale vitrification and rewarming.
    Gangwar L; Phatak SS; Etheridge M; Bischof JC
    Cryo Letters; 2022; 43(6):316-321. PubMed ID: 36629824
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrarapid Inductive Rewarming of Vitrified Biomaterials with Thin Metal Forms.
    Manuchehrabadi N; Shi M; Roy P; Han Z; Qiu J; Xu F; Lu TJ; Bischof J
    Ann Biomed Eng; 2018 Nov; 46(11):1857-1869. PubMed ID: 29922954
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Supplemented phase diagrams for vitrification CPA cocktails: DP6, VS55 and M22.
    Han Z; Gangwar L; Magnuson E; Etheridge ML; Pringle CO; Bischof JC; Choi J
    Cryobiology; 2022 Jun; 106():113-121. PubMed ID: 35276219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isochoric vitrification: An experimental study to establish proof of concept.
    Zhang Y; Ukpai G; Grigoropoulos A; Powell-Palm MJ; Weegman BP; Taylor MJ; Rubinsky B
    Cryobiology; 2018 Aug; 83():48-55. PubMed ID: 29908947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiological evaluation of a rabbit kidney perfused with VS41A.
    Arnaud FG; Khirabadi B; Fahy GM
    Cryobiology; 2003 Jun; 46(3):289-94. PubMed ID: 12818220
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal expansion measurements of cryoprotective agents. Part II: measurements of DP6 and VS55, and comparison with DMSO.
    Rabin Y; Bell E
    Cryobiology; 2003 Jun; 46(3):264-70. PubMed ID: 12818216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fracture formation in vitrified thin films of cryoprotectants.
    Rabin Y; Steif PS; Hess KC; Jimenez-Rios JL; Palastro MC
    Cryobiology; 2006 Aug; 53(1):75-95. PubMed ID: 16784737
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glass transition behavior of the vitrification solutions containing propanediol, dimethyl sulfoxide and polyvinyl alcohol.
    Wang HY; Lu SS; Lun ZR
    Cryobiology; 2009 Feb; 58(1):115-117. PubMed ID: 19026625
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vitrification tendency and stability of DP6-based vitrification solutions for complex tissue cryopreservation.
    Wowk B; Fahy GM; Ahmedyar S; Taylor MJ; Rabin Y
    Cryobiology; 2018 Jun; 82():70-77. PubMed ID: 29660316
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insights into the crystallization and vitrification of cryopreserved cells.
    Lin M; Cao H; Meng Q; Li J; Jiang P
    Cryobiology; 2022 Jun; 106():13-23. PubMed ID: 35550791
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A theoretical model of intracellular devitrification.
    Karlsson JO
    Cryobiology; 2001 May; 42(3):154-69. PubMed ID: 11578115
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of different vitrification solutions and cryodevices on viability and subsequent development of buffalo oocytes vitrified at the germinal vesicle (GV) stage.
    El-Shalofy AS; Moawad AR; Darwish GM; Ismail ST; Badawy ABA; Badr MR
    Cryobiology; 2017 Feb; 74():86-92. PubMed ID: 27908686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.