These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 28072558)

  • 1. A link between transcription fidelity and pausing in vivo.
    Gamba P; James K; Zenkin N
    Transcription; 2017 Mar; 8(2):99-105. PubMed ID: 28072558
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Misincorporation by RNA polymerase is a major source of transcription pausing in vivo.
    James K; Gamba P; Cockell SJ; Zenkin N
    Nucleic Acids Res; 2017 Feb; 45(3):1105-1113. PubMed ID: 28180286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visualizing translocation dynamics and nascent transcript errors in paused RNA polymerases in vivo.
    Imashimizu M; Takahashi H; Oshima T; McIntosh C; Bubunenko M; Court DL; Kashlev M
    Genome Biol; 2015 May; 16(1):98. PubMed ID: 25976475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interplay between σ region 3.2 and secondary channel factors during promoter escape by bacterial RNA polymerase.
    Petushkov I; Esyunina D; Mekler V; Severinov K; Pupov D; Kulbachinskiy A
    Biochem J; 2017 Dec; 474(24):4053-4064. PubMed ID: 29101286
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nascent RNA sequencing identifies a widespread sigma70-dependent pausing regulated by Gre factors in bacteria.
    Sun Z; Yakhnin AV; FitzGerald PC; Mclntosh CE; Kashlev M
    Nat Commun; 2021 Feb; 12(1):906. PubMed ID: 33568644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A
    Bubunenko MG; Court CB; Rattray AJ; Gotte DR; Kireeva ML; Irizarry-Caro JA; Li X; Jin DJ; Court DL; Strathern JN; Kashlev M
    Genetics; 2017 May; 206(1):179-187. PubMed ID: 28341651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcription elongation.
    Mustaev A; Roberts J; Gottesman M
    Transcription; 2017 May; 8(3):150-161. PubMed ID: 28301288
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcription factors IIS and IIF enhance transcription efficiency by differentially modifying RNA polymerase pausing dynamics.
    Ishibashi T; Dangkulwanich M; Coello Y; Lionberger TA; Lubkowska L; Ponticelli AS; Kashlev M; Bustamante C
    Proc Natl Acad Sci U S A; 2014 Mar; 111(9):3419-24. PubMed ID: 24550488
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Early transcriptional arrest at Escherichia coli rplN and ompX promoters.
    Stepanova E; Wang M; Severinov K; Borukhov S
    J Biol Chem; 2009 Dec; 284(51):35702-13. PubMed ID: 19854830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NusG controls transcription pausing and RNA polymerase translocation throughout the
    Yakhnin AV; FitzGerald PC; McIntosh C; Yakhnin H; Kireeva M; Turek-Herman J; Mandell ZF; Kashlev M; Babitzke P
    Proc Natl Acad Sci U S A; 2020 Sep; 117(35):21628-21636. PubMed ID: 32817529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcription is regulated by NusA:NusG interaction.
    Strauß M; Vitiello C; Schweimer K; Gottesman M; Rösch P; Knauer SH
    Nucleic Acids Res; 2016 Jul; 44(12):5971-82. PubMed ID: 27174929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcription infidelity and genome integrity: the parallax view.
    Gordon AJE; Sivaramakrishnan P; Halliday JA; Herman C
    Transcription; 2018; 9(5):315-320. PubMed ID: 29929421
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural transitions in the transcription elongation complexes of bacterial RNA polymerase during σ-dependent pausing.
    Zhilina E; Esyunina D; Brodolin K; Kulbachinskiy A
    Nucleic Acids Res; 2012 Apr; 40(7):3078-91. PubMed ID: 22140106
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of GreB-RNA polymerase interaction allow a proofreading accessory protein to patrol for transcription complexes needing rescue.
    Tetone LE; Friedman LJ; Osborne ML; Ravi H; Kyzer S; Stumper SK; Mooney RA; Landick R; Gelles J
    Proc Natl Acad Sci U S A; 2017 Feb; 114(7):E1081-E1090. PubMed ID: 28137878
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High intrinsic hydrolytic activity of cyanobacterial RNA polymerase compensates for the absence of transcription proofreading factors.
    Riaz-Bradley A; James K; Yuzenkova Y
    Nucleic Acids Res; 2020 Feb; 48(3):1341-1352. PubMed ID: 31840183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NusG-dependent RNA polymerase pausing is a frequent function of this universally conserved transcription elongation factor.
    Yakhnin AV; Kashlev M; Babitzke P
    Crit Rev Biochem Mol Biol; 2020 Dec; 55(6):716-728. PubMed ID: 33003953
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic competition between a ligand and transcription factor NusA governs riboswitch-mediated transcription regulation.
    Chauvier A; Ajmera P; Yadav R; Walter NG
    Proc Natl Acad Sci U S A; 2021 Nov; 118(47):. PubMed ID: 34782462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigating the role of RNA structures in transcriptional pausing using in vitro assays and in silico analyses.
    Jeanneau S; Jacques PÉ; Lafontaine DA
    RNA Biol; 2022 Jan; 19(1):916-927. PubMed ID: 35833713
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Two-Way Street: Regulatory Interplay between RNA Polymerase and Nascent RNA Structure.
    Zhang J; Landick R
    Trends Biochem Sci; 2016 Apr; 41(4):293-310. PubMed ID: 26822487
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Applied force provides insight into transcriptional pausing and its modulation by transcription factor NusA.
    Zhou J; Ha KS; La Porta A; Landick R; Block SM
    Mol Cell; 2011 Nov; 44(4):635-46. PubMed ID: 22099310
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.