These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 28073251)

  • 1. Interfaces Select Specific Stereochemical Conformations: The Isomerization of Glyoxal at the Liquid Water Interface.
    Zhu C; Kais S; Zeng XC; Francisco JS; Gladich I
    J Am Chem Soc; 2017 Jan; 139(1):27-30. PubMed ID: 28073251
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydration, Solvation, and Isomerization of Methylglyoxal at the Air/Water Interface: New Mechanistic Pathways.
    Zhu C; Zeng XC; Francisco JS; Gladich I
    J Am Chem Soc; 2020 Mar; 142(12):5574-5582. PubMed ID: 32091211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adsorption and isomerization of glyoxal and methylglyoxal at the air/hydroxylated silica surface.
    Gladich I; Carignano MA; Francisco JS
    J Chem Phys; 2020 Apr; 152(16):164702. PubMed ID: 32357765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tuning the Stereoselectivity and Solvation Selectivity at Interfacial and Bulk Environments by Changing Solvent Polarity: Isomerization of Glyoxal in Different Solvent Environments.
    Zhong J; Carignano MA; Kais S; Zeng XC; Francisco JS; Gladich I
    J Am Chem Soc; 2018 Apr; 140(16):5535-5543. PubMed ID: 29619831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A pinch of salt is all it takes: chemistry at the frozen water surface.
    Kahan TF; Wren SN; Donaldson DJ
    Acc Chem Res; 2014 May; 47(5):1587-94. PubMed ID: 24785086
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reactivity of aldehydes at the air-water interface. Insights from molecular dynamics simulations and ab initio calculations.
    Martins-Costa MT; García-Prieto FF; Ruiz-López MF
    Org Biomol Chem; 2015 Feb; 13(6):1673-9. PubMed ID: 25451554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrolysis of glyoxal in water-restricted environments: formation of organic aerosol precursors through formic acid catalysis.
    Hazra MK; Francisco JS; Sinha A
    J Phys Chem A; 2014 Jun; 118(23):4095-105. PubMed ID: 24831426
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insight into Chemistry on Cloud/Aerosol Water Surfaces.
    Zhong J; Kumar M; Francisco JS; Zeng XC
    Acc Chem Res; 2018 May; 51(5):1229-1237. PubMed ID: 29633837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solvation, Surface Propensity, and Chemical Reactions of Solutes at Atmospheric Liquid-Vapor Interfaces.
    Ammann M; Artiglia L
    Acc Chem Res; 2022 Dec; 55(24):3641-3651. PubMed ID: 36472357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolution of aqSOA from the Air-Liquid Interfacial Photochemistry of Glyoxal and Hydroxyl Radicals.
    Zhang F; Yu X; Sui X; Chen J; Zhu Z; Yu XY
    Environ Sci Technol; 2019 Sep; 53(17):10236-10245. PubMed ID: 31361474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of interfacial water in the heterogeneous uptake of glyoxal by mixed glycine and ammonium sulfate aerosols.
    Trainic M; Riziq AA; Lavi A; Rudich Y
    J Phys Chem A; 2012 Jun; 116(24):5948-57. PubMed ID: 22289141
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deprotonation of formic acid in collisions with a liquid water surface studied by molecular dynamics and metadynamics simulations.
    Murdachaew G; Nathanson GM; Benny Gerber R; Halonen L
    Phys Chem Chem Phys; 2016 Nov; 18(43):29756-29770. PubMed ID: 27777998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Revisiting the hexane-water interface via molecular dynamics simulations using nonadditive alkane-water potentials.
    Patel SA; Brooks CL
    J Chem Phys; 2006 May; 124(20):204706. PubMed ID: 16774363
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of the cis-trans isomerization barriers of L-alanyl-L-proline in aqueous solutions and at water/hydrophobic interfaces by on-line temperature-jump relaxation HPLC and dynamic on-column reaction HPLC.
    Shibukawa M; Miyake A; Eda S; Saito S
    Anal Chem; 2015 Sep; 87(18):9280-7. PubMed ID: 26320351
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Model analysis of secondary organic aerosol formation by glyoxal in laboratory studies: the case for photoenhanced chemistry.
    Sumner AJ; Woo JL; McNeill VF
    Environ Sci Technol; 2014 Oct; 48(20):11919-25. PubMed ID: 25226456
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atmospheric Spectroscopy and Photochemistry at Environmental Water Interfaces.
    Zhong J; Kumar M; Anglada JM; Martins-Costa MTC; Ruiz-Lopez MF; Zeng XC; Francisco JS
    Annu Rev Phys Chem; 2019 Jun; 70():45-69. PubMed ID: 31174459
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hexagonal ice stability and growth in the presence of glyoxal and secondary organic aerosols.
    Daskalakis V; Hadjicharalambous M
    Phys Chem Chem Phys; 2014 Sep; 16(33):17799-810. PubMed ID: 25033409
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interfacial vs Bulk Ozonolysis of Nerolidol.
    Qiu J; Ishizuka S; Tonokura K; Enami S
    Environ Sci Technol; 2019 May; 53(10):5750-5757. PubMed ID: 31017766
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ab initio and classical molecular dynamics studies of the structural and dynamical behavior of water near a hydrophobic graphene sheet.
    Rana MK; Chandra A
    J Chem Phys; 2013 May; 138(20):204702. PubMed ID: 23742495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular dynamics simulations of atmospheric oxidants at the air-water interface: solvation and accommodation of OH and O3.
    Vieceli J; Roeselova M; Potter N; Dang LX; Garrett BC; Tobias DJ
    J Phys Chem B; 2005 Aug; 109(33):15876-92. PubMed ID: 16853017
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.