BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 28073468)

  • 1. Cryptophyte gene regulation in the kleptoplastidic, karyokleptic ciliate Mesodinium rubrum.
    Kim GH; Han JH; Kim B; Han JW; Nam SW; Shin W; Park JW; Yih W
    Harmful Algae; 2016 Feb; 52():23-33. PubMed ID: 28073468
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Limits to the cellular control of sequestered cryptophyte prey in the marine ciliate Mesodinium rubrum.
    Altenburger A; Cai H; Li Q; Drumm K; Kim M; Zhu Y; Garcia-Cuetos L; Zhan X; Hansen PJ; John U; Li S; Lundholm N
    ISME J; 2021 Apr; 15(4):1056-1072. PubMed ID: 33230263
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cryptophyte farming by symbiotic ciliate host detected in situ.
    Qiu D; Huang L; Lin S
    Proc Natl Acad Sci U S A; 2016 Oct; 113(43):12208-12213. PubMed ID: 27791006
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The fate of cryptophyte cell organelles in the ciliate Mesodinium cf. rubrum subjected to starvation.
    Nam SW; Park JW; Yih W; Park MG; Shin W
    Harmful Algae; 2016 Nov; 59():19-30. PubMed ID: 28073503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics of Sequestered Cryptophyte Nuclei in
    Kim M; Drumm K; Daugbjerg N; Hansen PJ
    Front Microbiol; 2017; 8():423. PubMed ID: 28377747
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Seasonal succession of ciliate Mesodinium spp. with red, green, or mixed plastids and their association with cryptophyte prey.
    Nishitani G; Yamaguchi M
    Sci Rep; 2018 Nov; 8(1):17189. PubMed ID: 30464297
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Retention of transcriptionally active cryptophyte nuclei by the ciliate Myrionecta rubra.
    Johnson MD; Oldach D; Delwiche CF; Stoecker DK
    Nature; 2007 Jan; 445(7126):426-8. PubMed ID: 17251979
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insights into transcriptional changes that accompany organelle sequestration from the stolen nucleus of Mesodinium rubrum.
    Lasek-Nesselquist E; Wisecaver JH; Hackett JD; Johnson MD
    BMC Genomics; 2015 Oct; 16():805. PubMed ID: 26475598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prey type constrains growth and photosynthetic capacity of the kleptoplastidic ciliate Mesodinium chamaeleon (Ciliophora).
    Moeller HV; Hsu V; Lepori-Bui M; Mesrop LY; Chinn C; Johnson MD
    J Phycol; 2021 Jun; 57(3):916-930. PubMed ID: 33454988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth and Chloroplast Replacement of the Benthic Mixotrophic Ciliate Mesodinium coatsi.
    Kim M; Kang M; Park MG
    J Eukaryot Microbiol; 2019 Jul; 66(4):625-636. PubMed ID: 30561091
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combined Effects of Temperature, Irradiance, and pH on Teleaulax amphioxeia (Cryptophyceae) Physiology and Feeding Ratio For Its Predator Mesodinium rubrum (Ciliophora)
    Gaillard S; Charrier A; Malo F; Carpentier L; Bougaran G; Hégaret H; Réveillon D; Hess P; Séchet V
    J Phycol; 2020 Jun; 56(3):775-783. PubMed ID: 32052865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cryptophyte algae are robbed of their organelles by the marine ciliate Mesodinium rubrum.
    Gustafson DE; Stoecker DK; Johnson MD; Van Heukelem WF; Sneider K
    Nature; 2000 Jun; 405(6790):1049-52. PubMed ID: 10890444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiological Responses of Mesodinium major to Irradiance, Prey Concentration and Prey Starvation.
    Drumm K; Norlin A; Kim M; Altenburger A; Juel Hansen P
    J Eukaryot Microbiol; 2021 Apr; ():e12854. PubMed ID: 33866638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PHOTOACCLIMATION IN THE PHOTOTROPHIC MARINE CILIATE MESODINIUM RUBRUM (CILIOPHORA)(1).
    Moeller HV; Johnson MD; Falkowski PG
    J Phycol; 2011 Apr; 47(2):324-32. PubMed ID: 27021864
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The combined effect of pH and dissolved inorganic carbon concentrations on the physiology of plastidic ciliate Mesodinium rubrum and its cryptophyte prey.
    Eriksen CSY; Walli MD; Van de Waal DB; Helmsing NR; Dahl EO; Sørensen H; Hansen PJ
    Harmful Algae; 2023 Nov; 129():102509. PubMed ID: 37951617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of Highly Specific Molecular Markers Reveals Positive Correlation between Abundances of Mesodinium cf. major and Its Preferred Prey, Teleaulax amphioxeia, During Red Water Blooms in the Columbia River Estuary.
    Herfort L; Maxey K; Voorhees I; Simon HM; Grobler K; Peterson TD; Zuber P
    J Eukaryot Microbiol; 2017 Nov; 64(6):740-755. PubMed ID: 28258655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preferential Plastid Retention by the Acquired Phototroph Mesodinium chamaeleon.
    Moeller HV; Johnson MD
    J Eukaryot Microbiol; 2018 Mar; 65(2):148-158. PubMed ID: 28710891
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A dinoflagellate Amylax triacantha with plastids of the cryptophyte origin: phylogeny, feeding mechanism, and growth and grazing responses.
    Park MG; Kim M; Kang M
    J Eukaryot Microbiol; 2013; 60(4):363-76. PubMed ID: 23631398
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unveiling the hidden genetic diversity and chloroplast type of marine benthic ciliate Mesodinium species.
    Kim M; Park MG
    Sci Rep; 2019 Oct; 9(1):14081. PubMed ID: 31575940
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cascading effects of prey identity on gene expression in a kleptoplastidic ciliate.
    Paight C; Johnson MD; Lasek-Nesselquist E; Moeller HV
    J Eukaryot Microbiol; 2023 Jan; 70(1):e12940. PubMed ID: 35975609
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.