These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 28073471)
1. Biochemistry and genetics of taste- and odor-producing cyanobacteria. Watson SB; Monis P; Baker P; Giglio S Harmful Algae; 2016 Apr; 54():112-127. PubMed ID: 28073471 [TBL] [Abstract][Full Text] [Related]
2. Quantitative PCR based detection system for cyanobacterial geosmin/2-methylisoborneol (2-MIB) events in drinking water sources: Current status and challenges. Devi A; Chiu YT; Hsueh HT; Lin TF Water Res; 2021 Jan; 188():116478. PubMed ID: 33045635 [TBL] [Abstract][Full Text] [Related]
3. Elucidation of Taste- and Odor-Producing Bacteria and Toxigenic Cyanobacteria in a Midwestern Drinking Water Supply Reservoir by Shotgun Metagenomic Analysis. Otten TG; Graham JL; Harris TD; Dreher TW Appl Environ Microbiol; 2016 Sep; 82(17):5410-20. PubMed ID: 27342564 [TBL] [Abstract][Full Text] [Related]
4. Identification of geosmin and 2-methylisoborneol in cyanobacteria and molecular detection methods for the producers of these compounds. Suurnäkki S; Gomez-Saez GV; Rantala-Ylinen A; Jokela J; Fewer DP; Sivonen K Water Res; 2015 Jan; 68():56-66. PubMed ID: 25462716 [TBL] [Abstract][Full Text] [Related]
5. An improved method for PCR-based detection and routine monitoring of geosmin-producing cyanobacterial blooms. John N; Koehler AV; Ansell BRE; Baker L; Crosbie ND; Jex AR Water Res; 2018 Jun; 136():34-40. PubMed ID: 29494895 [TBL] [Abstract][Full Text] [Related]
6. Earthy odor compounds production and loss in three cyanobacterial cultures. Li Z; Hobson P; An W; Burch MD; House J; Yang M Water Res; 2012 Oct; 46(16):5165-73. PubMed ID: 22818951 [TBL] [Abstract][Full Text] [Related]
7. Reducing production of taste and odor by deep-living cyanobacteria in drinking water reservoirs by regulation of water level. Su M; Jia D; Yu J; Vogt RD; Wang J; An W; Yang M Sci Total Environ; 2017 Jan; 574():1477-1483. PubMed ID: 27707573 [TBL] [Abstract][Full Text] [Related]
8. Interspecific competition between Microcystis aeruginosa and Pseudanadaena and their production of T&O compounds. Zhang K; Pan R; Luo Z; Zhang T; Fan J Chemosphere; 2020 Aug; 252():126509. PubMed ID: 32224357 [TBL] [Abstract][Full Text] [Related]
9. Temporal Dynamics and Influential Factors of Taste and Odor Compounds in the Eastern Drinking Water Source of Chaohu Lake, China: A Comparative Analysis of Global Freshwaters. Shang L; Ke F; Xu X; Feng M; Li W Toxins (Basel); 2024 Jun; 16(6):. PubMed ID: 38922158 [TBL] [Abstract][Full Text] [Related]
10. Cyanobacterial blue color formation during lysis under natural conditions. Arii S; Tsuji K; Tomita K; Hasegawa M; Bober B; Harada K Appl Environ Microbiol; 2015 Apr; 81(8):2667-75. PubMed ID: 25662969 [TBL] [Abstract][Full Text] [Related]
11. Treatment of taste and odor material by oxidation and adsorption. Jung SW; Baek KH; Yu MJ Water Sci Technol; 2004; 49(9):289-95. PubMed ID: 15237637 [TBL] [Abstract][Full Text] [Related]
12. A guide to geosmin- and MIB-producing cyanobacteria in the United States. Izaguirre G; Taylor WD Water Sci Technol; 2004; 49(9):19-24. PubMed ID: 15237602 [TBL] [Abstract][Full Text] [Related]
13. Fate of geosmin and 2-methylisoborneol in full-scale water treatment plants. Zamyadi A; Henderson R; Stuetz R; Hofmann R; Ho L; Newcombe G Water Res; 2015 Oct; 83():171-83. PubMed ID: 26143274 [TBL] [Abstract][Full Text] [Related]
14. Response of Taste and Odor Compounds to Elevated Cyanobacteria Biomass and Temperature. Huang H; Xu X; Shi C; Liu X; Wang G Bull Environ Contam Toxicol; 2018 Aug; 101(2):272-278. PubMed ID: 29974165 [TBL] [Abstract][Full Text] [Related]
15. Temperature affects growth, geosmin/2-methylisoborneol production, and gene expression in two cyanobacterial species. Shen Q; Wang Q; Miao H; Shimada M; Utsumi M; Lei Z; Zhang Z; Nishimura O; Asada Y; Fujimoto N; Takanashi H; Akiba M; Shimizu K Environ Sci Pollut Res Int; 2022 Feb; 29(8):12017-12026. PubMed ID: 34558048 [TBL] [Abstract][Full Text] [Related]
16. MIB-producing cyanobacteria (Planktothrix sp.) in a drinking water reservoir: distribution and odor producing potential. Su M; Yu J; Zhang J; Chen H; An W; Vogt RD; Andersen T; Jia D; Wang J; Yang M Water Res; 2015 Jan; 68():444-53. PubMed ID: 25462751 [TBL] [Abstract][Full Text] [Related]
17. Managing taste and odour metabolite production in drinking water reservoirs: The importance of ammonium as a key nutrient trigger. Perkins RG; Slavin EI; Andrade TMC; Blenkinsopp C; Pearson P; Froggatt T; Godwin G; Parslow J; Hurley S; Luckwell R; Wain DJ J Environ Manage; 2019 Aug; 244():276-284. PubMed ID: 31128332 [TBL] [Abstract][Full Text] [Related]
18. Effect of oxidant exposure on the release of intracellular microcystin, MIB, and geosmin from three cyanobacteria species. Wert EC; Korak JA; Trenholm RA; Rosario-Ortiz FL Water Res; 2014 Apr; 52():251-9. PubMed ID: 24289950 [TBL] [Abstract][Full Text] [Related]
19. Aquatic taste and odor: a primary signal of drinking-water integrity. Watson S J Toxicol Environ Health A; 2004 Oct 22-Nov 26; 67(20-22):1779-95. PubMed ID: 15371216 [TBL] [Abstract][Full Text] [Related]
20. Assessment of the roles of reactive oxygen species in the UV and visible light photocatalytic degradation of cyanotoxins and water taste and odor compounds using C-TiO2. Fotiou T; Triantis TM; Kaloudis T; O'Shea KE; Dionysiou DD; Hiskia A Water Res; 2016 Mar; 90():52-61. PubMed ID: 26724439 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]