These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 28073944)

  • 1. A novel bifunctional transcriptional regulator of riboflavin metabolism in Archaea.
    Rodionova IA; Vetting MW; Li X; Almo SC; Osterman AL; Rodionov DA
    Nucleic Acids Res; 2017 Apr; 45(7):3785-3799. PubMed ID: 28073944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Novel Transcriptional Regulator Related to Thiamine Phosphate Synthase Controls Thiamine Metabolism Genes in Archaea.
    Rodionov DA; Leyn SA; Li X; Rodionova IA
    J Bacteriol; 2017 Feb; 199(4):. PubMed ID: 27920295
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel Transcriptional Regulons for Autotrophic Cycle Genes in Crenarchaeota.
    Leyn SA; Rodionova IA; Li X; Rodionov DA
    J Bacteriol; 2015 Jul; 197(14):2383-91. PubMed ID: 25939834
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative genomics of DtxR family regulons for metal homeostasis in Archaea.
    Leyn SA; Rodionov DA
    J Bacteriol; 2015 Feb; 197(3):451-8. PubMed ID: 25404694
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinct gene set in two different lineages of ammonia-oxidizing archaea supports the phylum Thaumarchaeota.
    Spang A; Hatzenpichler R; Brochier-Armanet C; Rattei T; Tischler P; Spieck E; Streit W; Stahl DA; Wagner M; Schleper C
    Trends Microbiol; 2010 Aug; 18(8):331-40. PubMed ID: 20598889
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacterial flavin mononucleotide riboswitches as targets for flavin analogs.
    Pedrolli DB; Mack M
    Methods Mol Biol; 2014; 1103():165-76. PubMed ID: 24318894
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of a Novel Mesophilic CTP-Dependent Riboflavin Kinase and Rational Engineering to Create Its Thermostable Homologues*.
    Kumar Y; Singh RK; Hazra AB
    Chembiochem; 2021 Dec; 22(24):3414-3424. PubMed ID: 34387404
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ThiN as a Versatile Domain of Transcriptional Repressors and Catalytic Enzymes of Thiamine Biosynthesis.
    Hwang S; Cordova B; Abdo M; Pfeiffer F; Maupin-Furlow JA
    J Bacteriol; 2017 Apr; 199(7):. PubMed ID: 28115546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Archaeal genomics.
    Gaasterland T
    Curr Opin Microbiol; 1999 Oct; 2(5):542-7. PubMed ID: 10508726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A CTP-dependent archaeal riboflavin kinase forms a bridge in the evolution of cradle-loop barrels.
    Ammelburg M; Hartmann MD; Djuranovic S; Alva V; Koretke KK; Martin J; Sauer G; Truffault V; Zeth K; Lupas AN; Coles M
    Structure; 2007 Dec; 15(12):1577-90. PubMed ID: 18073108
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-wide identification of SF1 and SF2 helicases from archaea.
    Chamieh H; Ibrahim H; Kozah J
    Gene; 2016 Jan; 576(1 Pt 2):214-28. PubMed ID: 26456193
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification and characterization of an archaeon-specific riboflavin kinase.
    Mashhadi Z; Zhang H; Xu H; White RH
    J Bacteriol; 2008 Apr; 190(7):2615-8. PubMed ID: 18245297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissecting the protein architecture of DNA-binding transcription factors in bacteria and archaea.
    Rivera-Gómez N; Martínez-Núñez MA; Pastor N; Rodriguez-Vazquez K; Perez-Rueda E
    Microbiology (Reading); 2017 Aug; 163(8):1167-1178. PubMed ID: 28777072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative genomics of DNA-binding transcription factors in archaeal and bacterial organisms.
    Martinez-Liu L; Hernandez-Guerrero R; Rivera-Gomez N; Martinez-Nuñez MA; Escobar-Turriza P; Peeters E; Perez-Rueda E
    PLoS One; 2021; 16(7):e0254025. PubMed ID: 34214112
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insights into the evolution of Archaea and eukaryotic protein modifier systems revealed by the genome of a novel archaeal group.
    Nunoura T; Takaki Y; Kakuta J; Nishi S; Sugahara J; Kazama H; Chee GJ; Hattori M; Kanai A; Atomi H; Takai K; Takami H
    Nucleic Acids Res; 2011 Apr; 39(8):3204-23. PubMed ID: 21169198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phyletic Distribution and Lineage-Specific Domain Architectures of Archaeal Two-Component Signal Transduction Systems.
    Galperin MY; Makarova KS; Wolf YI; Koonin EV
    J Bacteriol; 2018 Apr; 200(7):. PubMed ID: 29263101
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA-binding proteins and evolution of transcription regulation in the archaea.
    Aravind L; Koonin EV
    Nucleic Acids Res; 1999 Dec; 27(23):4658-70. PubMed ID: 10556324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hindsight in the relative abundance, metabolic potential and genome dynamics of uncultivated marine archaea from comparative metagenomic analyses of bathypelagic plankton of different oceanic regions.
    Martin-Cuadrado AB; Rodriguez-Valera F; Moreira D; Alba JC; Ivars-Martínez E; Henn MR; Talla E; López-García P
    ISME J; 2008 Aug; 2(8):865-86. PubMed ID: 18463691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure of Schizosaccharomyces pombe riboflavin kinase reveals a novel ATP and riboflavin-binding fold.
    Bauer S; Kemter K; Bacher A; Huber R; Fischer M; Steinbacher S
    J Mol Biol; 2003 Mar; 326(5):1463-73. PubMed ID: 12595258
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The many faces of the helix-turn-helix domain: transcription regulation and beyond.
    Aravind L; Anantharaman V; Balaji S; Babu MM; Iyer LM
    FEMS Microbiol Rev; 2005 Apr; 29(2):231-62. PubMed ID: 15808743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.