These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 28074041)

  • 21. The Genomes of Three Uneven Siblings: Footprints of the Lifestyles of Three Trichoderma Species.
    Schmoll M; Dattenböck C; Carreras-Villaseñor N; Mendoza-Mendoza A; Tisch D; Alemán MI; Baker SE; Brown C; Cervantes-Badillo MG; Cetz-Chel J; Cristobal-Mondragon GR; Delaye L; Esquivel-Naranjo EU; Frischmann A; Gallardo-Negrete Jde J; García-Esquivel M; Gomez-Rodriguez EY; Greenwood DR; Hernández-Oñate M; Kruszewska JS; Lawry R; Mora-Montes HM; Muñoz-Centeno T; Nieto-Jacobo MF; Nogueira Lopez G; Olmedo-Monfil V; Osorio-Concepcion M; Piłsyk S; Pomraning KR; Rodriguez-Iglesias A; Rosales-Saavedra MT; Sánchez-Arreguín JA; Seidl-Seiboth V; Stewart A; Uresti-Rivera EE; Wang CL; Wang TF; Zeilinger S; Casas-Flores S; Herrera-Estrella A
    Microbiol Mol Biol Rev; 2016 Mar; 80(1):205-327. PubMed ID: 26864432
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Protein phosphatases regulate growth, development, cellulases and secondary metabolism in Trichoderma reesei.
    Rodriguez-Iglesias A; Schmoll M
    Sci Rep; 2019 Jul; 9(1):10995. PubMed ID: 31358805
    [TBL] [Abstract][Full Text] [Related]  

  • 23. SUB1 has photoreceptor dependent and independent functions in sexual development and secondary metabolism in Trichoderma reesei.
    Bazafkan H; Beier S; Stappler E; Böhmdorfer S; Oberlerchner JT; Sulyok M; Schmoll M
    Mol Microbiol; 2017 Dec; 106(5):742-759. PubMed ID: 28925526
    [TBL] [Abstract][Full Text] [Related]  

  • 24. From an electrophoretic mobility shift assay to isolated transcription factors: a fast genomic-proteomic approach.
    Mach-Aigner AR; Grosstessner-Hain K; Poças-Fonseca MJ; Mechtler K; Mach RL
    BMC Genomics; 2010 Nov; 11():644. PubMed ID: 21087492
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification of a new biocontrol gene in Trichoderma atroviride: the role of an ABC transporter membrane pump in the interaction with different plant-pathogenic fungi.
    Ruocco M; Lanzuise S; Vinale F; Marra R; Turrà D; Woo SL; Lorito M
    Mol Plant Microbe Interact; 2009 Mar; 22(3):291-301. PubMed ID: 19245323
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Comprehensive and Reliable Detection of Secondary Metabolites in Trichoderma reesei: A Tool for the Discovery of Novel Substances.
    Seidl B; Bueschl C; Schuhmacher R
    Methods Mol Biol; 2021; 2234():271-295. PubMed ID: 33165793
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A new species of Trichoderma hypoxylon harbours abundant secondary metabolites.
    Sun J; Pei Y; Li E; Li W; Hyde KD; Yin WB; Liu X
    Sci Rep; 2016 Nov; 6():37369. PubMed ID: 27869187
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Histone acetyltransferase TGF-1 regulates Trichoderma atroviride secondary metabolism and mycoparasitism.
    Gómez-Rodríguez EY; Uresti-Rivera EE; Patrón-Soberano OA; Islas-Osuna MA; Flores-Martínez A; Riego-Ruiz L; Rosales-Saavedra MT; Casas-Flores S
    PLoS One; 2018; 13(4):e0193872. PubMed ID: 29708970
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Differential regulation of the cellulase transcription factors XYR1, ACE2, and ACE1 in Trichoderma reesei strains producing high and low levels of cellulase.
    Portnoy T; Margeot A; Seidl-Seiboth V; Le Crom S; Ben Chaabane F; Linke R; Seiboth B; Kubicek CP
    Eukaryot Cell; 2011 Feb; 10(2):262-71. PubMed ID: 21169417
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The N-acetylglucosamine catabolic gene cluster in Trichoderma reesei is controlled by the Ndt80-like transcription factor RON1.
    Kappel L; Gaderer R; Flipphi M; Seidl-Seiboth V
    Mol Microbiol; 2016 Feb; 99(4):640-57. PubMed ID: 26481444
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Relevance of the deletion of the Tatri4 gene in the secondary metabolome of Trichoderma arundinaceum.
    Izquierdo-Bueno I; Moraga J; Cardoza RE; Lindo L; Hanson JR; Gutiérrez S; Collado IG
    Org Biomol Chem; 2018 Apr; 16(16):2955-2965. PubMed ID: 29623313
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of Trichoderma arundinaceum tri10 in regulation of terpene biosynthetic genes and in control of metabolic flux.
    Lindo L; McCormick SP; Cardoza RE; Kim HS; Brown DW; Alexander NJ; Proctor RH; Gutiérrez S
    Fungal Genet Biol; 2019 Jan; 122():31-46. PubMed ID: 30439446
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Beyond the Biosynthetic Gene Cluster Paradigm: Genome-Wide Coexpression Networks Connect Clustered and Unclustered Transcription Factors to Secondary Metabolic Pathways.
    Kwon MJ; Steiniger C; Cairns TC; Wisecaver JH; Lind AL; Pohl C; Regner C; Rokas A; Meyer V
    Microbiol Spectr; 2021 Oct; 9(2):e0089821. PubMed ID: 34523946
    [TBL] [Abstract][Full Text] [Related]  

  • 34. TBRG-1 a Ras-like protein in Trichoderma virens involved in conidiation, development, secondary metabolism, mycoparasitism, and biocontrol unveils a new family of Ras-GTPases.
    Dautt-Castro M; Estrada-Rivera M; Olguin-Martínez I; Rocha-Medina MDC; Islas-Osuna MA; Casas-Flores S
    Fungal Genet Biol; 2020 Mar; 136():103292. PubMed ID: 31730908
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The AreA transcription factor in Fusarium graminearum regulates the use of some nonpreferred nitrogen sources and secondary metabolite production.
    Giese H; Sondergaard TE; Sørensen JL
    Fungal Biol; 2013; 117(11-12):814-21. PubMed ID: 24295920
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effects of disruption of phosphoglucose isomerase gene on carbon utilisation and cellulase production in Trichoderma reesei Rut-C30.
    Limón MC; Pakula T; Saloheimo M; Penttilä M
    Microb Cell Fact; 2011 May; 10():40. PubMed ID: 21609467
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The TOR kinase pathway is relevant for nitrogen signaling and antagonism of the mycoparasite Trichoderma atroviride.
    Segreto R; Bazafkan H; Millinger J; Schenk M; Atanasova L; Doppler M; Büschl C; Boeckstaens M; Soto Diaz S; Schreiner U; Sillo F; Balestrini R; Schuhmacher R; Zeilinger S
    PLoS One; 2021; 16(12):e0262180. PubMed ID: 34972198
    [TBL] [Abstract][Full Text] [Related]  

  • 38.
    Atriztán-Hernández K; Moreno-Pedraza A; Winkler R; Markow T; Herrera-Estrella A
    Appl Environ Microbiol; 2019 Jan; 85(2):. PubMed ID: 30389761
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Duality of the MAPK Signaling Pathway in the Control of Metabolic Processes and Cellulase Production in Trichoderma reesei.
    de Paula RG; Antoniêto ACC; Carraro CB; Lopes DCB; Persinoti GF; Peres NTA; Martinez-Rossi NM; Silva-Rocha R; Silva RN
    Sci Rep; 2018 Oct; 8(1):14931. PubMed ID: 30297963
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Impact of transgenic Bt maize residues on the mycotoxigenic plant pathogen Fusarium graminearum and the biocontrol agent Trichoderma atroviride.
    Naef A; Zesiger T; Défago G
    J Environ Qual; 2006; 35(4):1001-9. PubMed ID: 16738384
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.