BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 2807407)

  • 1. Histological changes in relation to accumulation and elimination of inorganic and methyl mercury in gills of Labeo rohita Hamilton.
    Paulose PV
    Indian J Exp Biol; 1989 Feb; 27(2):146-50. PubMed ID: 2807407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Histopathological evidence of inorganic mercury and methyl mercury toxicity in the arctic charr (Salvelinus alpinus).
    de Oliveira Ribeiro CA; Belger L; Pelletier E; Rouleau C
    Environ Res; 2002 Nov; 90(3):217-25. PubMed ID: 12477467
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mercury distribution in fish organs and food regimes: Significant relationships from twelve species collected in French Guiana (Amazonian basin).
    Régine MB; Gilles D; Yannick D; Alain B
    Sci Total Environ; 2006 Sep; 368(1):262-70. PubMed ID: 16266741
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Experimental study of the bioaccumulation of inorganic mercury and methylmercury in the goldfish (Carassius auratus L.)].
    Mondain J; Gras G
    C R Seances Soc Biol Fil; 1980; 174(5):929-32. PubMed ID: 6449276
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lactational exposure and neonatal kinetics of methylmercury and inorganic mercury in mice.
    Sundberg J; Jönsson S; Karlsson MO; Oskarsson A
    Toxicol Appl Pharmacol; 1999 Jan; 154(2):160-9. PubMed ID: 9925800
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative uptake, bioaccumulation, and gill damages of inorganic mercury in tropical and nordic freshwater fish.
    Oliveira Ribeiro CA; Pelletier E; Pfeiffer WC; Rouleau C
    Environ Res; 2000 Jul; 83(3):286-92. PubMed ID: 10944072
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of methylmercury and selenium on the bioaccumulation and histopathology in medaka (Oryzias latipes).
    Liao CY; Zhou QF; Fu JJ; Shi JB; Yuan CG; Jiang GB
    Environ Toxicol; 2007 Feb; 22(1):69-77. PubMed ID: 17295263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accumulation and elimination of methylmercury in Atlantic cod (Gadus morhua L.) following dietary exposure.
    Amlund H; Lundebye AK; Berntssen MH
    Aquat Toxicol; 2007 Aug; 83(4):323-30. PubMed ID: 17599546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The cumulation of methylmercury in fish (Poecilia reticulata).
    Starý J; Kratzer K; Havlík B; Prásilová J; Hanusová J
    Int J Environ Anal Chem; 1980; 8(3):189-95. PubMed ID: 7440040
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Demethylation of methyl mercury in different brain sites of Macaca fascicularis monkeys during long-term subclinical methyl mercury exposure.
    Vahter ME; Mottet NK; Friberg LT; Lind SB; Charleston JS; Burbacher TM
    Toxicol Appl Pharmacol; 1995 Oct; 134(2):273-84. PubMed ID: 7570604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuromotor deficits and mercury concentrations in rats exposed to methyl mercury and fish oil.
    Day JJ; Reed MN; Newland MC
    Neurotoxicol Teratol; 2005; 27(4):629-41. PubMed ID: 16024222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uptake of methylmercury and inorganic mercury by mouse glioma and mouse neuroblastoma cells.
    Nakada S; Imura N
    Neurotoxicology; 1982 Dec; 3(4):249-58. PubMed ID: 6892118
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Analysis of total mercury and methylmercury concentrations in four commercially important freshwater fish species obtained from Beijing markets].
    Sun J; Chen CY; Li B; Li YF; Wang JX; Gao YX; Chai ZF
    Wei Sheng Yan Jiu; 2006 Nov; 35(6):722-5. PubMed ID: 17290751
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The interaction of mercurials with myelin: comparison of in vitro and in vivo effects.
    Ganser AL; Kirschner DA
    Neurotoxicology; 1985; 6(1):63-77. PubMed ID: 3873038
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in the number of astrocytes and microglia in the thalamus of the monkey Macaca fascicularis following long-term subclinical methylmercury exposure.
    Charleston JS; Body RL; Bolender RP; Mottet NK; Vahter ME; Burbacher TM
    Neurotoxicology; 1996; 17(1):127-38. PubMed ID: 8784824
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Histopathological effects and bioaccumulation of mercury in the kidney of an Indian major carp, Labeo rohita (Hamilton).
    Ghosh D; Mandal DK
    Bull Environ Contam Toxicol; 2012 Sep; 89(3):479-83. PubMed ID: 22810019
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Autometallographic determination of inorganic mercury distribution in the cortex of the calcarine sulcus of the monkey Macaca fascicularis following long-term subclinical exposure to methylmercury and mercuric chloride.
    Charleston JS; Body RL; Mottet NK; Vahter ME; Burbacher TM
    Toxicol Appl Pharmacol; 1995 Jun; 132(2):325-33. PubMed ID: 7785060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Copper influenced changes of lipid metabolism in the tissues of freshwater teleost Labeo rohita (Hamilton).
    Sivaramakrishna B; Suresh A; Venkataramana P; Radhakrishnaiah K
    Biochem Int; 1992 Feb; 26(2):335-42. PubMed ID: 1558545
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative study on the inhibition of acetylcholinesterase activity in the freshwater fish Cyprinus carpio by mercury and zinc.
    Suresh A; Sivaramakrishna B; Victoriamma PC; Radhakrishnaiah K
    Biochem Int; 1992 Feb; 26(2):367-75. PubMed ID: 1558548
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Environmental and human exposure assessment monitoring of communities near an abandoned mercury mine in the Philippines: a toxic legacy.
    Maramba NP; Reyes JP; Francisco-Rivera AT; Panganiban LC; Dioquino C; Dando N; Timbang R; Akagi H; Castillo MT; Quitoriano C; Afuang M; Matsuyama A; Eguchi T; Fuchigami Y
    J Environ Manage; 2006 Oct; 81(2):135-45. PubMed ID: 16949727
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.