These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 28074178)

  • 1. Effects of Frequency and Acceleration Amplitude on Osteoblast Mechanical Vibration Responses: A Finite Element Study.
    Wang L; Hsu HY; Li X; Xian CJ
    Biomed Res Int; 2016; 2016():2735091. PubMed ID: 28074178
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Constrained tibial vibration in mice: a method for studying the effects of vibrational loading of bone.
    Christiansen BA; Bayly PV; Silva MJ
    J Biomech Eng; 2008 Aug; 130(4):044502. PubMed ID: 18601464
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of broad frequency vibration on cultured osteoblasts.
    Tanaka SM; Li J; Duncan RL; Yokota H; Burr DB; Turner CH
    J Biomech; 2003 Jan; 36(1):73-80. PubMed ID: 12485640
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential response to vibration of three forms of scoliosis during axial cyclic loading: a finite element study.
    Jia S; Li Y; Xie J; Tian T; Zhang S; Han L
    BMC Musculoskelet Disord; 2019 Aug; 20(1):370. PubMed ID: 31409412
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vibration of osteoblastic cells using a novel motion-control platform does not acutely alter cytosolic calcium, but desensitizes subsequent responses to extracellular ATP.
    Lorusso D; Nikolov HN; Holdsworth DW; Dixon SJ
    J Cell Physiol; 2020 Jun; 235(6):5096-5110. PubMed ID: 31696507
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human mesenchymal stromal cells are mechanosensitive to vibration stimuli.
    Kim IS; Song YM; Lee B; Hwang SJ
    J Dent Res; 2012 Dec; 91(12):1135-40. PubMed ID: 23086742
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vibrational stimulation induces osteoblast differentiation and the upregulation of osteogenic gene expression in vitro.
    Ota T; Chiba M; Hayashi H
    Cytotechnology; 2016 Dec; 68(6):2287-2299. PubMed ID: 27639712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical control of human osteoblast apoptosis and proliferation in relation to differentiation.
    Weyts FA; Bosmans B; Niesing R; van Leeuwen JP; Weinans H
    Calcif Tissue Int; 2003 Apr; 72(4):505-12. PubMed ID: 12532282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Involvement of Wnt activation in the micromechanical vibration-enhanced osteogenic response of osteoblasts.
    Hou WW; Zhu ZL; Zhou Y; Zhang CX; Yu HY
    J Orthop Sci; 2011 Sep; 16(5):598-605. PubMed ID: 21833614
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shear Stress Modulates Osteoblast Cell and Nucleus Morphology and Volume.
    Jin J; Jaspers RT; Wu G; Korfage JAM; Klein-Nulend J; Bakker AD
    Int J Mol Sci; 2020 Nov; 21(21):. PubMed ID: 33171812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bone cell responses to high-frequency vibration stress: does the nucleus oscillate within the cytoplasm?
    Bacabac RG; Smit TH; Van Loon JJ; Doulabi BZ; Helder M; Klein-Nulend J
    FASEB J; 2006 May; 20(7):858-64. PubMed ID: 16675843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental model for stimulation of cultured human osteoblast-like cells by high frequency vibration.
    Rosenberg N; Levy M; Francis M
    Cytotechnology; 2002 Sep; 39(3):125-30. PubMed ID: 19003304
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A finite element method study of the effect of vibration on the dynamic biomechanical response of the lumbar spine.
    Zhu S; Dong R; Liu Z; Liu H; Lu Z; Guo Y
    Clin Biomech (Bristol, Avon); 2024 Jan; 111():106164. PubMed ID: 38159326
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Osteoblast mechanoresponses on Ti with different surface topographies.
    Sato N; Kubo K; Yamada M; Hori N; Suzuki T; Maeda H; Ogawa T
    J Dent Res; 2009 Sep; 88(9):812-6. PubMed ID: 19767577
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design, construction and characterisation of a novel nanovibrational bioreactor and cultureware for osteogenesis.
    Campsie P; Childs PG; Robertson SN; Cameron K; Hough J; Salmeron-Sanchez M; Tsimbouri PM; Vichare P; Dalby MJ; Reid S
    Sci Rep; 2019 Sep; 9(1):12944. PubMed ID: 31506561
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The bio-response of osteocytes and its regulation on osteoblasts under vibration.
    Wu XT; Sun LW; Qi HY; Shi H; Fan YB
    Cell Biol Int; 2016 Apr; 40(4):397-406. PubMed ID: 26715381
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Osteoblast responses one hour after load-induced fluid flow in a three-dimensional porous matrix.
    Tanaka SM; Sun HB; Roeder RK; Burr DB; Turner CH; Yokota H
    Calcif Tissue Int; 2005 Apr; 76(4):261-71. PubMed ID: 15812578
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of low-magnitude high-frequency vibration on osteoblasts are dependent on estrogen receptor α signaling and cytoskeletal remodeling.
    Haffner-Luntzer M; Lackner I; Liedert A; Fischer V; Ignatius A
    Biochem Biophys Res Commun; 2018 Sep; 503(4):2678-2684. PubMed ID: 30093109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of the cytoskeleton in mechanotransduction in human osteoblast-like cells.
    Rosenberg N
    Hum Exp Toxicol; 2003 May; 22(5):271-4. PubMed ID: 12774890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Initial stress-kick is required for fluid shear stress-induced rate dependent activation of bone cells.
    Bacabac RG; Smit TH; Mullender MG; Van Loon JJ; Klein-Nulend J
    Ann Biomed Eng; 2005 Jan; 33(1):104-10. PubMed ID: 15709711
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.