These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
229 related articles for article (PubMed ID: 28074232)
1. Vasoactive actions of nitroxyl (HNO) are preserved in resistance arteries in diabetes. Tare M; Kalidindi RS; Bubb KJ; Parkington HC; Boon WM; Li X; Sobey CG; Drummond GR; Ritchie RH; Kemp-Harper BK Naunyn Schmiedebergs Arch Pharmacol; 2017 Apr; 390(4):397-408. PubMed ID: 28074232 [TBL] [Abstract][Full Text] [Related]
2. Endothelium-dependent nitroxyl-mediated relaxation is resistant to superoxide anion scavenging and preserved in diabetic rat aorta. Leo CH; Joshi A; Hart JL; Woodman OL Pharmacol Res; 2012 Nov; 66(5):383-91. PubMed ID: 22898326 [TBL] [Abstract][Full Text] [Related]
3. Augmented endothelium-derived hyperpolarizing factor-mediated relaxations attenuate endothelial dysfunction in femoral and mesenteric, but not in carotid arteries from type I diabetic rats. Shi Y; Ku DD; Man RY; Vanhoutte PM J Pharmacol Exp Ther; 2006 Jul; 318(1):276-81. PubMed ID: 16565165 [TBL] [Abstract][Full Text] [Related]
4. Diabetes Attenuates the Contribution of Endogenous Nitric Oxide but Not Nitroxyl to Endothelium Dependent Relaxation of Rat Carotid Arteries. Li JC; Velagic A; Qin CX; Li M; Leo CH; Kemp-Harper BK; Ritchie RH; Woodman OL Front Pharmacol; 2020; 11():585740. PubMed ID: 33716721 [TBL] [Abstract][Full Text] [Related]
5. A role for nitroxyl (HNO) as an endothelium-derived relaxing and hyperpolarizing factor in resistance arteries. Andrews KL; Irvine JC; Tare M; Apostolopoulos J; Favaloro JL; Triggle CR; Kemp-Harper BK Br J Pharmacol; 2009 Jun; 157(4):540-50. PubMed ID: 19338582 [TBL] [Abstract][Full Text] [Related]
7. Adverse vascular remodelling is more sensitive than endothelial dysfunction to hyperglycaemia in diabetic rat mesenteric arteries. Kahlberg N; Qin CX; Anthonisz J; Jap E; Ng HH; Jelinic M; Parry LJ; Kemp-Harper BK; Ritchie RH; Leo CH Pharmacol Res; 2016 Sep; 111():325-335. PubMed ID: 27363948 [TBL] [Abstract][Full Text] [Related]
8. Cardioprotective actions of nitroxyl donor Angeli's salt are preserved in the diabetic heart and vasculature in the face of nitric oxide resistance. Velagic A; Li JC; Qin CX; Li M; Deo M; Marshall SA; Anderson D; Woodman OL; Horowitz JD; Kemp-Harper BK; Ritchie RH Br J Pharmacol; 2022 Aug; 179(16):4117-4135. PubMed ID: 35365882 [TBL] [Abstract][Full Text] [Related]
9. 3',4'-Dihydroxyflavonol reduces superoxide and improves nitric oxide function in diabetic rat mesenteric arteries. Leo CH; Hart JL; Woodman OL PLoS One; 2011; 6(6):e20813. PubMed ID: 21673968 [TBL] [Abstract][Full Text] [Related]
10. The Dipeptidyl Peptidase-4 Inhibitor Linagliptin Preserves Endothelial Function in Mesenteric Arteries from Type 1 Diabetic Rats without Decreasing Plasma Glucose. Salheen SM; Panchapakesan U; Pollock CA; Woodman OL PLoS One; 2015; 10(11):e0143941. PubMed ID: 26618855 [TBL] [Abstract][Full Text] [Related]
11. Comparison of effects of diabetes mellitus on an EDHF-dependent and an EDHF-independent artery. Wigg SJ; Tare M; Tonta MA; O'Brien RC; Meredith IT; Parkington HC Am J Physiol Heart Circ Physiol; 2001 Jul; 281(1):H232-40. PubMed ID: 11406490 [TBL] [Abstract][Full Text] [Related]
12. Nitroxyl (HNO) suppresses vascular Nox2 oxidase activity. Miller AA; Maxwell KF; Chrissobolis S; Bullen ML; Ku JM; Michael De Silva T; Selemidis S; Hooker EU; Drummond GR; Sobey CG; Kemp-Harper BK Free Radic Biol Med; 2013 Jul; 60():264-71. PubMed ID: 23459072 [TBL] [Abstract][Full Text] [Related]
13. 3',4'-Dihydroxyflavonol restores endothelium-dependent relaxation in small mesenteric artery from rats with type 1 and type 2 diabetes. Leo CH; Hart JL; Woodman OL Eur J Pharmacol; 2011 Jun; 659(2-3):193-8. PubMed ID: 21453697 [TBL] [Abstract][Full Text] [Related]
15. Nitric oxide dynamics and endothelial dysfunction in type II model of genetic diabetes. Bitar MS; Wahid S; Mustafa S; Al-Saleh E; Dhaunsi GS; Al-Mulla F Eur J Pharmacol; 2005 Mar; 511(1):53-64. PubMed ID: 15777779 [TBL] [Abstract][Full Text] [Related]
16. The concomitant coronary vasodilator and positive inotropic actions of the nitroxyl donor Angeli's salt in the intact rat heart: contribution of soluble guanylyl cyclase-dependent and -independent mechanisms. Chin KY; Qin C; Cao N; Kemp-Harper BK; Woodman OL; Ritchie RH Br J Pharmacol; 2014 Apr; 171(7):1722-34. PubMed ID: 24372173 [TBL] [Abstract][Full Text] [Related]
17. Regional differences in endothelium-dependent relaxation in the rat: contribution of nitric oxide and nitric oxide-independent mechanisms. Zygmunt PM; Ryman T; Högestätt ED Acta Physiol Scand; 1995 Nov; 155(3):257-66. PubMed ID: 8619323 [TBL] [Abstract][Full Text] [Related]
18. Nitroxyl: a vasodilator of human vessels that is not susceptible to tolerance. Andrews KL; Lumsden NG; Farry J; Jefferis AM; Kemp-Harper BK; Chin-Dusting JP Clin Sci (Lond); 2015 Jul; 129(2):179-87. PubMed ID: 25728899 [TBL] [Abstract][Full Text] [Related]
19. Differential effect of amylin on endothelial-dependent vasodilation in mesenteric arteries from control and insulin resistant rats. El Assar M; Angulo J; Santos-Ruiz M; Moreno P; Novials A; Villanueva-Peñacarrillo ML; Rodríguez-Mañas L PLoS One; 2015; 10(3):e0120479. PubMed ID: 25807378 [TBL] [Abstract][Full Text] [Related]
20. Nitrite- and nitroxyl-induced relaxation in porcine coronary (micro-) arteries: underlying mechanisms and role as endothelium-derived hyperpolarizing factor(s). Botden IP; Batenburg WW; de Vries R; Langendonk JG; Sijbrands EJ; Danser AH Pharmacol Res; 2012 Nov; 66(5):409-18. PubMed ID: 22902525 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]