These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
229 related articles for article (PubMed ID: 28074232)
21. Chronic iron overload induces functional and structural vascular changes in small resistance arteries via NADPH oxidase-dependent O Ribeiro Júnior RF; Marques VB; Nunes DO; Stefanon I; Dos Santos L Toxicol Lett; 2017 Sep; 279():43-52. PubMed ID: 28700905 [TBL] [Abstract][Full Text] [Related]
22. High concentration of uric acid failed to affect endothelial function of small mesenteric arteries, femoral arteries and aortas from aged Wistar-Kyoto rats. Balis P; Berenyiova A; Radosinska J; Kvandova M; Bernatova I; Puzserova A J Physiol Pharmacol; 2020 Jun; 71(3):. PubMed ID: 33077692 [TBL] [Abstract][Full Text] [Related]
23. Mechanisms underlying reduced P2Y(1) -receptor-mediated relaxation in superior mesenteric arteries from long-term streptozotocin-induced diabetic rats. Ishida K; Matsumoto T; Taguchi K; Kamata K; Kobayashi T Acta Physiol (Oxf); 2013 Jan; 207(1):130-41. PubMed ID: 22759594 [TBL] [Abstract][Full Text] [Related]
25. A novel role for HNO in local and spreading vasodilatation in rat mesenteric resistance arteries. Yuill KH; Yarova P; Kemp-Harper BK; Garland CJ; Dora KA Antioxid Redox Signal; 2011 May; 14(9):1625-35. PubMed ID: 20615121 [TBL] [Abstract][Full Text] [Related]
26. Increased superoxide anion production by interleukin-1beta impairs nitric oxide-mediated relaxation in resistance arteries. Jiménez-Altayó F; Briones AM; Giraldo J; Planas AM; Salaices M; Vila E J Pharmacol Exp Ther; 2006 Jan; 316(1):42-52. PubMed ID: 16183707 [TBL] [Abstract][Full Text] [Related]
27. Endothelial dysfunction in mesenteric resistance arteries of diabetic rats: role of free radicals. Diederich D; Skopec J; Diederich A; Dai FX Am J Physiol; 1994 Mar; 266(3 Pt 2):H1153-61. PubMed ID: 8160818 [TBL] [Abstract][Full Text] [Related]
28. The vascular-disrupting agent, combretastatin-A4-phosphate, enhances neurogenic vasoconstriction in rat small arteries. Su J; Laursen BE; Eskildsen-Helmond Y; Horsman MR; Simonsen U Eur J Pharmacol; 2012 Nov; 695(1-3):104-11. PubMed ID: 22981665 [TBL] [Abstract][Full Text] [Related]
29. Type 1 diabetes and hypercholesterolaemia reveal the contribution of endothelium-derived hyperpolarizing factor to endothelium-dependent relaxation of the rat aorta. Malakul W; Thirawarapan S; Suvitayavat W; Woodman OL Clin Exp Pharmacol Physiol; 2008 Feb; 35(2):192-200. PubMed ID: 17941894 [TBL] [Abstract][Full Text] [Related]
30. Vascular region-specific changes in arterial tone in rats with type 2 diabetes mellitus: Opposite responses of mesenteric and femoral arteries to acetylcholine and 5-hydroxytryptamine. Zelinskaya I; Kornushin O; Savochkina E; Dyachuk V; Vasyutina M; Galagudza M; Toropova Y Life Sci; 2021 Dec; 286():120011. PubMed ID: 34606853 [TBL] [Abstract][Full Text] [Related]
31. Mechanisms underlying the losartan treatment-induced improvement in the endothelial dysfunction seen in mesenteric arteries from type 2 diabetic rats. Matsumoto T; Ishida K; Nakayama N; Taguchi K; Kobayashi T; Kamata K Pharmacol Res; 2010 Sep; 62(3):271-81. PubMed ID: 20304070 [TBL] [Abstract][Full Text] [Related]
32. Opening of small and intermediate calcium-activated potassium channels induces relaxation mainly mediated by nitric-oxide release in large arteries and endothelium-derived hyperpolarizing factor in small arteries from rat. Stankevicius E; Dalsgaard T; Kroigaard C; Beck L; Boedtkjer E; Misfeldt MW; Nielsen G; Schjorring O; Hughes A; Simonsen U J Pharmacol Exp Ther; 2011 Dec; 339(3):842-50. PubMed ID: 21880870 [TBL] [Abstract][Full Text] [Related]
33. Impaired capsaicin-induced relaxation in diabetic mesenteric arteries. Zhang Y; Chen Q; Sun Z; Han J; Wang L; Zheng L J Diabetes Complications; 2015 Aug; 29(6):747-54. PubMed ID: 26055306 [TBL] [Abstract][Full Text] [Related]
34. Alterations in endothelium-dependent hyperpolarization and relaxation in mesenteric arteries from streptozotocin-induced diabetic rats. Fukao M; Hattori Y; Kanno M; Sakuma I; Kitabatake A Br J Pharmacol; 1997 Aug; 121(7):1383-91. PubMed ID: 9257918 [TBL] [Abstract][Full Text] [Related]
35. Endothelial dysfunction in the streptozotocin-induced diabetic apoE-deficient mouse. Ding H; Hashem M; Wiehler WB; Lau W; Martin J; Reid J; Triggle C Br J Pharmacol; 2005 Dec; 146(8):1110-8. PubMed ID: 16231005 [TBL] [Abstract][Full Text] [Related]
36. Nitroxyl donors retain their depressor effects in hypertension. Irvine JC; Ravi RM; Kemp-Harper BK; Widdop RE Am J Physiol Heart Circ Physiol; 2013 Sep; 305(6):H939-45. PubMed ID: 23851276 [TBL] [Abstract][Full Text] [Related]
37. Hemodynamic Effects of Glutathione-Liganded Binuclear Dinitrosyl Iron Complex: Evidence for Nitroxyl Generation and Modulation by Plasma Albumin. Liu T; Zhang M; Terry MH; Schroeder H; Wilson SM; Power GG; Li Q; Tipple TE; Borchardt D; Blood AB Mol Pharmacol; 2018 May; 93(5):427-437. PubMed ID: 29476040 [TBL] [Abstract][Full Text] [Related]
38. Chronic administration of the nitroxyl donor 1-nitrosocyclo hexyl acetate limits left ventricular diastolic dysfunction in a mouse model of diabetes mellitus in vivo. Cao N; Wong YG; Rosli S; Kiriazis H; Huynh K; Qin C; Du XJ; Kemp-Harper BK; Ritchie RH Circ Heart Fail; 2015 May; 8(3):572-81. PubMed ID: 25737497 [TBL] [Abstract][Full Text] [Related]
39. Nitroxyl anion donor, Angeli's salt, does not develop tolerance in rat isolated aortae. Irvine JC; Favaloro JL; Widdop RE; Kemp-Harper BK Hypertension; 2007 Apr; 49(4):885-92. PubMed ID: 17309955 [TBL] [Abstract][Full Text] [Related]
40. Endothelial nitric oxide modulates perivascular sensory neurotransmission in the rat isolated mesenteric arterial bed. Ralevic V Br J Pharmacol; 2002 Sep; 137(1):19-28. PubMed ID: 12183327 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]