These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 28074417)

  • 1. Influence of the marvelous™ three-way stopcock on the natural frequency and damping coefficient in blood pressure transducer kits.
    Fujiwara SJL; Tachihara K; Mori S; Ouchi K; Itakura S; Yasuda M; Hitosugi T; Imaizumi U; Miki Y; Toyoguchi I; Yoshida KI; Yokoyama T
    J Clin Monit Comput; 2018 Feb; 32(1):63-72. PubMed ID: 28074417
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of using a Planecta™ port with a three-way stopcock on the natural frequency of blood pressure transducer kits.
    Fujiwara S; Tachihara K; Mori S; Ouchi K; Yokoe C; Imaizumi U; Morimoto Y; Miki Y; Toyoguchi I; Yoshida KI; Yokoyama T
    J Clin Monit Comput; 2016 Dec; 30(6):925-931. PubMed ID: 26467334
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of planecta and ROSE™ on the frequency characteristics of blood pressure-transducer kits.
    Fujiwara S; Kawakubo Y; Mori S; Tachihara K; Toyoguchi I; Yokoyama T
    J Clin Monit Comput; 2015 Dec; 29(6):681-9. PubMed ID: 25516163
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Frequency characteristics of pressure transducer kits with inserted pressure-resistant extension tubes.
    Fujiwara S; Mori S; Tachihara K; Yamamoto T; Yokoe C; Imaizumi U; Morimoto Y; Miki Y; Toyoguchi I; Yoshida KI; Yokoyama T
    J Clin Monit Comput; 2017 Apr; 31(2):371-380. PubMed ID: 26946147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbial contamination of arterial infusions used for hemodynamic monitoring: a randomized trial of contamination with sampling through conventional stopcocks versus a novel closed system.
    Crow S; Conrad SA; Chaney-Rowell C; King JW
    Infect Control Hosp Epidemiol; 1989 Dec; 10(12):557-61. PubMed ID: 2614056
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of filtering methods for acquiring radial intra-artery blood pressure waveforms.
    Hersh LT; Friedman B; Luczyk W; Sesing J
    J Clin Monit Comput; 2015 Oct; 29(5):659-69. PubMed ID: 25516162
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oscillometric blood pressure: calculated risk or reward.
    Alpert BS; Dart RA; Quinn D
    Blood Press Monit; 2014 Oct; 19(5):255. PubMed ID: 25198793
    [No Abstract]   [Full Text] [Related]  

  • 8. The 10 Hz dynamic response of a fluid-filled pressure monitoring system is a novel alternative to the fast flush test and indicative of unacceptable systolic pressure overshoot.
    Hirahata T; Hashimoto S; Watanabe H; Yagi SI; Edanaga M; Yamakage M
    J Clin Monit Comput; 2024 Jun; 38(3):715-719. PubMed ID: 38310593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Frequency response evaluation of radial artery catheter-manometer systems: sinusoidal frequency analysis versus flush method.
    Schwid HA
    J Clin Monit; 1988 Jul; 4(3):181-5. PubMed ID: 3210066
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Equivalence of fast flush and square wave testing of blood pressure monitoring systems.
    Kleinman B; Powell S; Gardner RM
    J Clin Monit; 1996 Mar; 12(2):149-54. PubMed ID: 8823635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic response of the ROSE damping device.
    Kleinman B; Powell S
    J Clin Monit; 1989 Apr; 5(2):111-5. PubMed ID: 2723705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time-dependent pressure distortion in a catheter-transducer system: correction by fast flush.
    Promonet C; Anglade D; Menaouar A; Bayat S; Durand M; Eberhard A; Grimbert FA
    Anesthesiology; 2000 Jan; 92(1):208-18. PubMed ID: 10638918
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Why the natural frequency and the damping coefficient do not evaluate the dynamic response of clinically used pressure monitoring circuits correctly.
    Watanabe H; Yagi SI
    J Anesth; 2020 Dec; 34(6):898-903. PubMed ID: 32860541
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accuracy and dynamic response of disposable pressure transducer-tubing systems.
    Hunziker P
    Can J Anaesth; 1987 Jul; 34(4):409-14. PubMed ID: 3608063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction and use of catheter-manometer systems.
    Heimann PA; Murray WB
    J Clin Monit; 1993 Jan; 9(1):45-53. PubMed ID: 8463804
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measuring systolic arterial blood pressure. Possible errors from extension tubes or disposable transducer domes.
    Rothe CF; Kim KC
    Crit Care Med; 1980 Nov; 8(11):683-9. PubMed ID: 7428397
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement of arterial pressure using catheter-transducer systems. Improvement using the Accudynamic.
    Allan MW; Gray WM; Asbury AJ
    Br J Anaesth; 1988 Mar; 60(4):413-8. PubMed ID: 3355737
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sweep-frequency marker generator for blood pressure transducer testing.
    Lee AS
    J Clin Eng; 1983; 8(3):248-52. PubMed ID: 10263340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Non-invasive blood pressure measuring device].
    Kaliadin NI; Lemenkov VA; Korobeĭnikov AV; Perevozchikov SM; Vlasov VG
    Med Tekh; 2002; (3):30-2. PubMed ID: 12224250
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oscillations or cuff-arterial pulses?
    Jilek J
    Biomed Instrum Technol; 2010; 44(1):6. PubMed ID: 20374104
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.