These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 28074466)

  • 41. Spatial patterns of movement of dung beetle species in a tropical forest suggest a new trap spacing for dung beetle biodiversity studies.
    Silva PG; Hernández MI
    PLoS One; 2015; 10(5):e0126112. PubMed ID: 25938506
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Greenhouse gas emissions from dung pats vary with dung beetle species and with assemblage composition.
    Piccini I; Arnieri F; Caprio E; Nervo B; Pelissetti S; Palestrini C; Roslin T; Rolando A
    PLoS One; 2017; 12(7):e0178077. PubMed ID: 28700590
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A trait-based framework for dung beetle functional ecology.
    deCastro-Arrazola I; Andrew NR; Berg MP; Curtsdotter A; Lumaret JP; Menéndez R; Moretti M; Nervo B; Nichols ES; Sánchez-Piñero F; Santos AMC; Sheldon KS; Slade EM; Hortal J
    J Anim Ecol; 2023 Jan; 92(1):44-65. PubMed ID: 36443916
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A dung beetle that path integrates without the use of landmarks.
    Dacke M; El Jundi B; Gagnon Y; Yilmaz A; Byrne M; Baird E
    Anim Cogn; 2020 Nov; 23(6):1161-1175. PubMed ID: 32902692
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Orcokinin in the central complex of the locust Schistocerca gregaria: Identification of immunostained neurons and colocalization with other neuroactive substances.
    Homberg U; Hensgen R; Rieber E; Seyfarth J; Kern M; Dippel S; Dircksen H; Spänig L; Kina YP
    J Comp Neurol; 2021 Jun; 529(8):1876-1894. PubMed ID: 33128250
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Innate olfactory preferences in dung beetles.
    Dormont L; Jay-Robert P; Bessière JM; Rapior S; Lumaret JP
    J Exp Biol; 2010 Sep; 213(Pt 18):3177-86. PubMed ID: 20802120
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Low doses of ivermectin cause sensory and locomotor disorders in dung beetles.
    Verdú JR; Cortez V; Ortiz AJ; González-Rodríguez E; Martinez-Pinna J; Lumaret JP; Lobo JM; Numa C; Sánchez-Piñero F
    Sci Rep; 2015 Sep; 5():13912. PubMed ID: 26350768
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Anatomical basis of sun compass navigation II: the neuronal composition of the central complex of the monarch butterfly.
    Heinze S; Florman J; Asokaraj S; El Jundi B; Reppert SM
    J Comp Neurol; 2013 Feb; 521(2):267-98. PubMed ID: 22886450
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Topographic organization and possible function of the posterior optic tubercles in the brain of the desert locust Schistocerca gregaria.
    Beetz MJ; El Jundi B; Heinze S; Homberg U
    J Comp Neurol; 2015 Aug; 523(11):1589-607. PubMed ID: 25557150
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The Rolling of Food by Dung Beetles Affects the Oviposition of Competing Flies.
    Ix-Balam MA; A Oliveira MG; Louzada J; McNeil JN; Lima E
    Insects; 2018 Jul; 9(3):. PubMed ID: 30065163
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The impact of overgrazing on dung beetle diversity in the Italian Maritime Alps.
    Negro M; Rolando A; Palestrini C
    Environ Entomol; 2011 Oct; 40(5):1081-92. PubMed ID: 22251720
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The brain of Cataglyphis ants: Neuronal organization and visual projections.
    Habenstein J; Amini E; Grübel K; El Jundi B; Rössler W
    J Comp Neurol; 2020 Dec; 528(18):3479-3506. PubMed ID: 32337712
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Dung beetles and fecal helminth transmission: patterns, mechanisms and questions.
    Nichols E; Gómez A
    Parasitology; 2014 Apr; 141(5):614-23. PubMed ID: 24476794
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Light pollution forces a change in dung beetle orientation behavior.
    Foster JJ; Tocco C; Smolka J; Khaldy L; Baird E; Byrne MJ; Nilsson DE; Dacke M
    Curr Biol; 2021 Sep; 31(17):3935-3942.e3. PubMed ID: 34329592
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Patterns of daily flight activity in onitine dung beetles (Scarabaeinae: Onitini).
    Caveney S; Scholtz CH; McIntyre P
    Oecologia; 1995 Sep; 103(4):444-452. PubMed ID: 28306992
    [TBL] [Abstract][Full Text] [Related]  

  • 56. How Does Dung Beetle (Coleoptera: Scarabaeidae) Diversity Vary Along a Rainy Season in a Tropical Dry Forest?
    Novais SM; Evangelista LA; Reis-Júnior R; Neves FS
    J Insect Sci; 2016; 16(1):. PubMed ID: 27620555
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Insect Orientation: The Travails of Going Straight.
    Collett TS; Wystrach A; Graham P
    Curr Biol; 2016 Jun; 26(11):R461-3. PubMed ID: 27269721
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Removal rates of native and exotic dung by dung beetles (Scarabaeidae: Scarabaeinae) in a fragmented tropical rain forest.
    Amézquita S; Favila ME
    Environ Entomol; 2010 Apr; 39(2):328-36. PubMed ID: 20388260
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Dung beetles (Coleoptera: Scarabaeidae) attracted to dung of the largest herbivorous rodent on earth: a comparison with human feces.
    Puker A; Correa CM; Korasaki V; Ferreira KR; Oliveira NG
    Environ Entomol; 2013 Dec; 42(6):1218-25. PubMed ID: 24468553
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Secondary seed dispersal by dung beetles in an Amazonian forest fragment of Colombia: influence of dung type and edge effect.
    Santos-Heredia C; Andresen E; Stevenson P
    Integr Zool; 2011 Dec; 6(4):399-408. PubMed ID: 22182331
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.