BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1322 related articles for article (PubMed ID: 28074612)

  • 1. A New CuO-Fe
    Di Lecce D; Verrelli R; Campanella D; Marangon V; Hassoun J
    ChemSusChem; 2017 Apr; 10(7):1607-1615. PubMed ID: 28074612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A High-Voltage and High-Capacity Li1+x Ni0.5 Mn1.5 O4 Cathode Material: From Synthesis to Full Lithium-Ion Cells.
    Mancini M; Axmann P; Gabrielli G; Kinyanjui M; Kaiser U; Wohlfahrt-Mehrens M
    ChemSusChem; 2016 Jul; 9(14):1843-9. PubMed ID: 27273330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Capacity Layered-Spinel Cathodes for Li-Ion Batteries.
    Nayak PK; Levi E; Grinblat J; Levi M; Markovsky B; Munichandraiah N; Sun YK; Aurbach D
    ChemSusChem; 2016 Sep; 9(17):2404-13. PubMed ID: 27530465
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stable, high voltage Li0.85Ni0.46Cu0.1Mn1.49O4 spinel cathode in a lithium-ion battery using a conversion-type CuO anode.
    Verrelli R; Scrosati B; Sun YK; Hassoun J
    ACS Appl Mater Interfaces; 2014 Apr; 6(7):5206-11. PubMed ID: 24611783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Red Mud and Li-Ion Batteries: A Magnetic Connection.
    Suryawanshi A; Aravindan V; Madhavi S; Ogale S
    ChemSusChem; 2016 Aug; 9(16):2193-200. PubMed ID: 27403736
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Porous Co3O4/CuO composite assembled from nanosheets as high-performance anodes for lithium-ion batteries.
    Hao Q; Zhao D; Duan H; Xu C
    ChemSusChem; 2015 Apr; 8(8):1435-41. PubMed ID: 25828049
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Core-shell carbon-coated CuO nanocomposites: a highly stable electrode material for supercapacitors and lithium-ion batteries.
    Wen T; Wu XL; Zhang S; Wang X; Xu AW
    Chem Asian J; 2015 Mar; 10(3):595-601. PubMed ID: 25663599
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A 4 V Li-Ion Battery using All-Spinel-Based Electrodes.
    Islam M; Jeong MG; Ali G; Oh IH; Chung KY; Sun YK; Jung HG
    ChemSusChem; 2018 Jul; 11(13):2165-2170. PubMed ID: 29738098
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sol-gel synthesis of aliovalent vanadium-doped LiNi(0.5)Mn(1.5)O(4) cathodes with excellent performance at high temperatures.
    Kim MC; Nam KW; Hu E; Yang XQ; Kim H; Kang K; Aravindan V; Kim WS; Lee YS
    ChemSusChem; 2014 Mar; 7(3):829-34. PubMed ID: 24399460
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MoO2-ordered mesoporous carbon hybrids as anode materials with highly improved rate capability and reversible capacity for lithium-ion battery.
    Chen A; Li C; Tang R; Yin L; Qi Y
    Phys Chem Chem Phys; 2013 Aug; 15(32):13601-10. PubMed ID: 23832242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Porous LiFePO4/C microspheres as high-power cathode materials for lithium ion batteries.
    Sun B; Wang Y; Wang B; Kim HS; Kim WS; Wang G
    J Nanosci Nanotechnol; 2013 May; 13(5):3655-9. PubMed ID: 23858922
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mesoporous CuO particles threaded with CNTs for high-performance lithium-ion battery anodes.
    Ko S; Lee JI; Yang HS; Park S; Jeong U
    Adv Mater; 2012 Aug; 24(32):4451-6. PubMed ID: 22786742
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Core-Shell Fe/Fe2 O3 Nanowire as a High-Performance Anode Material for Lithium-Ion Batteries.
    Na Z; Huang G; Liang F; Yin D; Wang L
    Chemistry; 2016 Aug; 22(34):12081-7. PubMed ID: 27406922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of amorphous FeOOH/reduced graphene oxide composite by infrared irradiation and its superior lithium storage performance.
    Sun Y; Hu X; Luo W; Xu H; Hu C; Huang Y
    ACS Appl Mater Interfaces; 2013 Oct; 5(20):10145-50. PubMed ID: 24066738
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lithium-ion transport through a tailored disordered phase on the LiNi0.5 Mn1.5 O4 surface for high-power cathode materials.
    Jo MR; Kim YI; Kim Y; Chae JS; Roh KC; Yoon WS; Kang YM
    ChemSusChem; 2014 Aug; 7(8):2248-54. PubMed ID: 24924807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facile Synthesis of Ni
    Li L; Jin B; Lang X; Yang C; Gao W; Zhu Y; Dou S; Jiang Q
    Chempluschem; 2016 Nov; 81(11):1174-1181. PubMed ID: 31964096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile synthesis of novel tunable highly porous CuO nanorods for high rate lithium battery anodes with realized long cycle life and high reversible capacity.
    Wang L; Gong H; Wang C; Wang D; Tang K; Qian Y
    Nanoscale; 2012 Nov; 4(21):6850-5. PubMed ID: 23034730
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced lithium storage in Fe2O3-SnO2-C nanocomposite anode with a breathable structure.
    Rahman MM; Glushenkov AM; Ramireddy T; Tao T; Chen Y
    Nanoscale; 2013 Jun; 5(11):4910-6. PubMed ID: 23624706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly monodispersed tin oxide/mesoporous starbust carbon composite as high-performance Li-ion battery anode.
    Chen J; Yano K
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):7682-7. PubMed ID: 23947639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-assembly of mesoporous CuO nanosheets-CNT 3D-network composites for lithium-ion batteries.
    Huang H; Liu Y; Wang J; Gao M; Peng X; Ye Z
    Nanoscale; 2013 Mar; 5(5):1785-8. PubMed ID: 23361121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 67.