These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1250 related articles for article (PubMed ID: 28074612)

  • 61. α-Fe2O3 nanoparticle-loaded carbon nanofibers as stable and high-capacity anodes for rechargeable lithium-ion batteries.
    Ji L; Toprakci O; Alcoutlabi M; Yao Y; Li Y; Zhang S; Guo B; Lin Z; Zhang X
    ACS Appl Mater Interfaces; 2012 May; 4(5):2672-9. PubMed ID: 22524417
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Limitations of disordered carbons obtained from biomass as anodes for real lithium-ion batteries.
    Caballero A; Hernán L; Morales J
    ChemSusChem; 2011 May; 4(5):658-63. PubMed ID: 21567976
    [TBL] [Abstract][Full Text] [Related]  

  • 63. MoO2-ordered mesoporous carbon nanocomposite as an anode material for lithium-ion batteries.
    Zeng L; Zheng C; Deng C; Ding X; Wei M
    ACS Appl Mater Interfaces; 2013 Mar; 5(6):2182-7. PubMed ID: 23438299
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Facile synthesis of sandwiched Zn2GeO4-graphene oxide nanocomposite as a stable and high-capacity anode for lithium-ion batteries.
    Zou F; Hu X; Qie L; Jiang Y; Xiong X; Qiao Y; Huang Y
    Nanoscale; 2014 Jan; 6(2):924-30. PubMed ID: 24280782
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Co3O4/carbon aerogel hybrids as anode materials for lithium-ion batteries with enhanced electrochemical properties.
    Hao F; Zhang Z; Yin L
    ACS Appl Mater Interfaces; 2013 Sep; 5(17):8337-44. PubMed ID: 23924311
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Synthesis and characterization of hollow alpha-Fe2O3 spheres with carbon coating for Li-ion battery.
    Du Z; Zhang S; Zhao J; Wu X; Lin R
    J Nanosci Nanotechnol; 2013 May; 13(5):3602-5. PubMed ID: 23858911
    [TBL] [Abstract][Full Text] [Related]  

  • 67. L-cysteine-assisted synthesis of layered MoS₂/graphene composites with excellent electrochemical performances for lithium ion batteries.
    Chang K; Chen W
    ACS Nano; 2011 Jun; 5(6):4720-8. PubMed ID: 21574610
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Morphological Evolution of High-Voltage Spinel LiNi(0.5)Mn(1.5)O4 Cathode Materials for Lithium-Ion Batteries: The Critical Effects of Surface Orientations and Particle Size.
    Liu H; Wang J; Zhang X; Zhou D; Qi X; Qiu B; Fang J; Kloepsch R; Schumacher G; Liu Z; Li J
    ACS Appl Mater Interfaces; 2016 Feb; 8(7):4661-75. PubMed ID: 26824793
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The application of catalyst-recovered SnO2 as an anode material for lithium secondary batteries.
    Ryu DJ; Jung HW; Lee SH; Park DJ; Ryu KS
    Environ Sci Pollut Res Int; 2016 Aug; 23(15):15015-22. PubMed ID: 27083904
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Growth of hierarchical 3D mesoporous NiSix /NiCo2 O4 core/shell heterostructures on nickel foam for lithium-ion batteries.
    Zhang Q; Chen H; Wang J; Xu D; Li X; Yang Y; Zhang K
    ChemSusChem; 2014 Aug; 7(8):2325-34. PubMed ID: 24828680
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Lithium Storage in Microstructures of Amorphous Mixed-Valence Vanadium Oxide as Anode Materials.
    Zhao D; Zheng L; Xiao Y; Wang X; Cao M
    ChemSusChem; 2015 Jul; 8(13):2212-22. PubMed ID: 26018759
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Aggregation-Morphology-Dependent Electrochemical Performance of Co
    Kong L; Wang L; Sun D; Meng S; Xu D; He Z; Dong X; Li Y; Jin Y
    Molecules; 2019 Aug; 24(17):. PubMed ID: 31470618
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Facile Synthesis of Rod-like Cu
    Li H; Jiang J; Wang F; Huang J; Wang Y; Zhang Y; Zhao J
    ChemSusChem; 2017 May; 10(10):2235-2241. PubMed ID: 28383799
    [TBL] [Abstract][Full Text] [Related]  

  • 74. General Approach to Single and Hybrid Metal Oxide Fiber Structures for High-Performance Lithium-Ion Batteries.
    Xie L; Yan Y; Lin H; Rui K; Huang A; Du M; Shen Y; Zhu J
    Chem Asian J; 2020 Apr; 15(7):1105-1109. PubMed ID: 32026606
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Rod-like Ni
    Zhang Y; Dong Y; Wei R; Guan H; Kang X; Al-Tahan MA; Zhang J
    J Colloid Interface Sci; 2022 Feb; 607(Pt 2):1153-1162. PubMed ID: 34571302
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Synthesis and Application of Phosphorus/Co
    Zamani N; Modarresi-Alam AR; Noroozifar M
    ACS Omega; 2018 Apr; 3(4):4620-4630. PubMed ID: 31458683
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Combining Optimized Particle Morphology with a Niobium-Based Coating for Long Cycling-Life, High-Voltage Lithium-Ion Batteries.
    Gabrielli G; Axmann P; Diemant T; Behm RJ; Wohlfahrt-Mehrens M
    ChemSusChem; 2016 Jul; 9(13):1670-9. PubMed ID: 27254109
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Flagellar filament bio-templated inorganic oxide materials - towards an efficient lithium battery anode.
    Beznosov SN; Veluri PS; Pyatibratov MG; Chatterjee A; MacFarlane DR; Fedorov OV; Mitra S
    Sci Rep; 2015 Jan; 5():7736. PubMed ID: 25583370
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Electrochemical properties of yolk-shell-structured CuO-Fe(2)O(3) powders with various Cu/Fe molar ratios prepared by one-pot spray pyrolysis.
    Yang KM; Hong YJ; Kang YC
    ChemSusChem; 2013 Dec; 6(12):2299-303. PubMed ID: 24106078
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Template-free synthesis of mesoporous hollow CuO microspheres as anode materials for Li-ion batteries.
    Zhang Z; Che H; Sun J; She X; Chen H; Su F
    J Nanosci Nanotechnol; 2013 Feb; 13(2):1530-4. PubMed ID: 23646676
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 63.