These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 28074643)
1. Ultraphotostable Mesoporous Silica-Coated Gap-Enhanced Raman Tags (GERTs) for High-Speed Bioimaging. Zhang Y; Qiu Y; Lin L; Gu H; Xiao Z; Ye J ACS Appl Mater Interfaces; 2017 Feb; 9(4):3995-4005. PubMed ID: 28074643 [TBL] [Abstract][Full Text] [Related]
2. Gap-enhanced Raman tags for high-contrast sentinel lymph node imaging. Bao Z; Zhang Y; Tan Z; Yin X; Di W; Ye J Biomaterials; 2018 May; 163():105-115. PubMed ID: 29455067 [TBL] [Abstract][Full Text] [Related]
3. Raman photostability of off-resonant gap-enhanced Raman tags. Gu Y; Zhang Y; Li Y; Jin X; Huang C; Maier SA; Ye J RSC Adv; 2018 Apr; 8(26):14434-14444. PubMed ID: 35540756 [TBL] [Abstract][Full Text] [Related]
4. Graphene-wrapped petal-like gap-enhanced Raman tags for enhancing photothermal conversion and Raman imaging. Chen M; Zhao X; Wang B; Liu H; Chen Z; Sun L; Xu X Spectrochim Acta A Mol Biomol Spectrosc; 2024 Jan; 304():123306. PubMed ID: 37683434 [TBL] [Abstract][Full Text] [Related]
5. Highly Stable, Graphene-Wrapped, Petal-like, Gap-Enhanced Raman Tags. Chen M; Wang B; Wang J; Liu H; Chen Z; Xu X; Zhao X Nanomaterials (Basel); 2022 May; 12(10):. PubMed ID: 35630847 [TBL] [Abstract][Full Text] [Related]
6. Gap-enhanced Raman tags: fabrication, optical properties, and theranostic applications. Khlebtsov NG; Lin L; Khlebtsov BN; Ye J Theranostics; 2020; 10(5):2067-2094. PubMed ID: 32089735 [TBL] [Abstract][Full Text] [Related]
7. "Elastic" property of mesoporous silica shell: for dynamic surface enhanced Raman scattering ability monitoring of growing noble metal nanostructures via a simplified spatially confined growth method. Lin M; Wang Y; Sun X; Wang W; Chen L ACS Appl Mater Interfaces; 2015 Apr; 7(14):7516-25. PubMed ID: 25815901 [TBL] [Abstract][Full Text] [Related]
8. Ultrabright gap-enhanced Raman tags for high-speed bioimaging. Zhang Y; Gu Y; He J; Thackray BD; Ye J Nat Commun; 2019 Aug; 10(1):3905. PubMed ID: 31467266 [TBL] [Abstract][Full Text] [Related]
10. Multifunctional gap-enhanced Raman tags for preoperative and intraoperative cancer imaging. Shi B; Zhang B; Zhang Y; Gu Y; Zheng C; Yan J; Chen W; Yan F; Ye J; Zhang H Acta Biomater; 2020 Mar; 104():210-220. PubMed ID: 31927113 [TBL] [Abstract][Full Text] [Related]
11. Hybrid plasmonic platforms based on silica-encapsulated gold nanorods as effective spectroscopic enhancers for Raman and fluorescence spectroscopy. Gabudean AM; Biro D; Astilean S Nanotechnology; 2012 Dec; 23(48):485706. PubMed ID: 23138835 [TBL] [Abstract][Full Text] [Related]
12. Upconversion fluorescence-SERS dual-mode tags for cellular and in vivo imaging. Niu X; Chen H; Wang Y; Wang W; Sun X; Chen L ACS Appl Mater Interfaces; 2014 Apr; 6(7):5152-60. PubMed ID: 24617579 [TBL] [Abstract][Full Text] [Related]
13. SERS-fluorescence joint spectral encoded magnetic nanoprobes for multiplex cancer cell separation. Wang Z; Zong S; Chen H; Wang C; Xu S; Cui Y Adv Healthc Mater; 2014 Nov; 3(11):1889-97. PubMed ID: 24862088 [TBL] [Abstract][Full Text] [Related]
14. Surface-Enhanced Raman Scattering Bioimaging with an Ultrahigh Signal-to-Background Ratio under Ambient Light. Zhu S; Deng B; Liu F; Li J; Lin L; Ye J ACS Appl Mater Interfaces; 2022 Feb; 14(7):8876-8887. PubMed ID: 35157434 [TBL] [Abstract][Full Text] [Related]
15. Gap-enhance Raman tags (GERTs) competitive immunoassay based Raman imaging for the quantitative detection of trace florfenicol in milk. Shan J; Li X; Han S; Ren T; Jin M; Wang X Food Chem; 2022 Oct; 391():133233. PubMed ID: 35605538 [TBL] [Abstract][Full Text] [Related]
16. Preparation of silica-encapsulated hollow gold nanosphere tags using layer-by-layer method for multiplex surface-enhanced raman scattering detection. Huang J; Kim KH; Choi N; Chon H; Lee S; Choo J Langmuir; 2011 Aug; 27(16):10228-33. PubMed ID: 21702512 [TBL] [Abstract][Full Text] [Related]
17. Accurate Quantification and Imaging of Cellular Uptake Using Single-Particle Surface-Enhanced Raman Scattering. Scarpitti BT; Fan S; Lomax-Vogt M; Lutton A; Olesik JW; Schultz ZD ACS Sens; 2024 Jan; 9(1):73-80. PubMed ID: 38100727 [TBL] [Abstract][Full Text] [Related]
18. Biocompatible triplex Ag@SiO2@mTiO2 core-shell nanoparticles for simultaneous fluorescence-SERS bimodal imaging and drug delivery. Wang Y; Chen L; Liu P Chemistry; 2012 May; 18(19):5935-43. PubMed ID: 22461327 [TBL] [Abstract][Full Text] [Related]
19. Electron Transport Across Plasmonic Molecular Nanogaps Interrogated with Surface-Enhanced Raman Scattering. Lin L; Zhang Q; Li X; Qiu M; Jiang X; Jin W; Gu H; Lei DY; Ye J ACS Nano; 2018 Jul; 12(7):6492-6503. PubMed ID: 29924592 [TBL] [Abstract][Full Text] [Related]
20. Magnetically controllable dual-mode nanoprobes for cell imaging with an onion-liked structure. Chen H; Wang Z; Ma X; Zong S; Cui Y Talanta; 2013 Nov; 116():978-84. PubMed ID: 24148504 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]