These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
485 related articles for article (PubMed ID: 28074646)
1. Differences in Protein Concentration Dependence for Nucleation and Elongation in Light Chain Amyloid Formation. Blancas-Mejía LM; Misra P; Ramirez-Alvarado M Biochemistry; 2017 Feb; 56(5):757-766. PubMed ID: 28074646 [TBL] [Abstract][Full Text] [Related]
2. Recruitment of Light Chains by Homologous and Heterologous Fibrils Shows Distinctive Kinetic and Conformational Specificity. Blancas-Mejía LM; Ramirez-Alvarado M Biochemistry; 2016 May; 55(21):2967-78. PubMed ID: 27158939 [TBL] [Abstract][Full Text] [Related]
3. Differential effects on light chain amyloid formation depend on mutations and type of glycosaminoglycans. Blancas-Mejía LM; Hammernik J; Marin-Argany M; Ramirez-Alvarado M J Biol Chem; 2015 Feb; 290(8):4953-4965. PubMed ID: 25538238 [TBL] [Abstract][Full Text] [Related]
4. Heat-induced native dimerization prevents amyloid formation by variable domain from immunoglobulin light-chain REI. Nawata M; Tsutsumi H; Kobayashi Y; Unzai S; Mine S; Nakamura T; Uegaki K; Kamikubo H; Kataoka M; Hamada D FEBS J; 2017 Sep; 284(18):3114-3127. PubMed ID: 28736891 [TBL] [Abstract][Full Text] [Related]
5. Immunoglobulin light chain amyloid aggregation. Blancas-Mejia LM; Misra P; Dick CJ; Cooper SA; Redhage KR; Bergman MR; Jordan TL; Maar K; Ramirez-Alvarado M Chem Commun (Camb); 2018 Sep; 54(76):10664-10674. PubMed ID: 30087961 [TBL] [Abstract][Full Text] [Related]
6. Solid-state NMR chemical shift assignments for AL-09 V Piehl DW; Blancas-Mejía LM; Ramirez-Alvarado M; Rienstra CM Biomol NMR Assign; 2017 Apr; 11(1):45-50. PubMed ID: 27771830 [TBL] [Abstract][Full Text] [Related]
7. Partially folded intermediates as critical precursors of light chain amyloid fibrils and amorphous aggregates. Khurana R; Gillespie JR; Talapatra A; Minert LJ; Ionescu-Zanetti C; Millett I; Fink AL Biochemistry; 2001 Mar; 40(12):3525-35. PubMed ID: 11297418 [TBL] [Abstract][Full Text] [Related]
8. The amyloid fibrils of the constant domain of immunoglobulin light chain. Yamamoto K; Yagi H; Lee YH; Kardos J; Hagihara Y; Naiki H; Goto Y FEBS Lett; 2010 Aug; 584(15):3348-53. PubMed ID: 20580354 [TBL] [Abstract][Full Text] [Related]
9. Thermodynamic and fibril formation studies of full length immunoglobulin light chain AL-09 and its germline protein using scan rate dependent thermal unfolding. Blancas-Mejía LM; Horn TJ; Marin-Argany M; Auton M; Tischer A; Ramirez-Alvarado M Biophys Chem; 2015 Dec; 207():13-20. PubMed ID: 26263488 [TBL] [Abstract][Full Text] [Related]
10. Mechanistic Insights into the Early Events in the Aggregation of Immunoglobulin Light Chains. Misra P; Blancas-Mejia LM; Ramirez-Alvarado M Biochemistry; 2019 Jul; 58(29):3155-3168. PubMed ID: 31287666 [TBL] [Abstract][Full Text] [Related]
11. MAK33 antibody light chain amyloid fibrils are similar to oligomeric precursors. Hora M; Sarkar R; Morris V; Xue K; Prade E; Harding E; Buchner J; Reif B PLoS One; 2017; 12(7):e0181799. PubMed ID: 28746363 [TBL] [Abstract][Full Text] [Related]
12. Comparison of amyloid fibril formation by two closely related immunoglobulin light chain variable domains. Martin DJ; Ramirez-Alvarado M Amyloid; 2010 Sep; 17(3-4):129-36. PubMed ID: 21077798 [TBL] [Abstract][Full Text] [Related]
13. The Antibody Light-Chain Linker Is Important for Domain Stability and Amyloid Formation. Nokwe CN; Hora M; Zacharias M; Yagi H; John C; Reif B; Goto Y; Buchner J J Mol Biol; 2015 Nov; 427(22):3572-3586. PubMed ID: 26408269 [TBL] [Abstract][Full Text] [Related]
14. Seeded fibrils of the germline variant of human λ-III immunoglobulin light chain FOR005 have a similar core as patient fibrils with reduced stability. Pradhan T; Annamalai K; Sarkar R; Huhn S; Hegenbart U; Schönland S; Fändrich M; Reif B J Biol Chem; 2020 Dec; 295(52):18474-18484. PubMed ID: 33093170 [TBL] [Abstract][Full Text] [Related]
15. Decreased amyloidogenicity caused by mutational modulation of surface properties of the immunoglobulin light chain BRE variable domain. Kobayashi Y; Tsutsumi H; Abe T; Ikeda K; Tashiro Y; Unzai S; Kamikubo H; Kataoka M; Hiroaki H; Hamada D Biochemistry; 2014 Aug; 53(31):5162-73. PubMed ID: 25062800 [TBL] [Abstract][Full Text] [Related]
16. Cell Damage in Light Chain Amyloidosis: FIBRIL INTERNALIZATION, TOXICITY AND CELL-MEDIATED SEEDING. Marin-Argany M; Lin Y; Misra P; Williams A; Wall JS; Howell KG; Elsbernd LR; McClure M; Ramirez-Alvarado M J Biol Chem; 2016 Sep; 291(38):19813-25. PubMed ID: 27462073 [TBL] [Abstract][Full Text] [Related]
17. Macromolecular crowding favors the fibrillization of β2-microglobulin by accelerating the nucleation step and inhibiting fibril disassembly. Luo XD; Kong FL; Dang HB; Chen J; Liang Y Biochim Biophys Acta; 2016 Nov; 1864(11):1609-19. PubMed ID: 27481166 [TBL] [Abstract][Full Text] [Related]
18. A model for amyloid fibril formation in immunoglobulin light chains based on comparison of amyloidogenic and benign proteins and specific antibody binding. Khurana R; Souillac PO; Coats AC; Minert L; Ionescu-Zanetti C; Carter SA; Solomon A; Fink AL Amyloid; 2003 Jun; 10(2):97-109. PubMed ID: 12964417 [TBL] [Abstract][Full Text] [Related]
19. Structural basis of light chain amyloidogenicity: comparison of the thermodynamic properties, fibrillogenic potential and tertiary structural features of four Vlambda6 proteins. Wall JS; Gupta V; Wilkerson M; Schell M; Loris R; Adams P; Solomon A; Stevens F; Dealwis C J Mol Recognit; 2004; 17(4):323-31. PubMed ID: 15227639 [TBL] [Abstract][Full Text] [Related]
20. Identification of two principal amyloid-driving segments in variable domains of Ig light chains in systemic light-chain amyloidosis. Brumshtein B; Esswein SR; Sawaya MR; Rosenberg G; Ly AT; Landau M; Eisenberg DS J Biol Chem; 2018 Dec; 293(51):19659-19671. PubMed ID: 30355736 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]