These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 28074938)

  • 1. Sprayable superhydrophobic nano-chains coating with continuous self-jumping of dew and melting frost.
    Wang S; Zhang W; Yu X; Liang C; Zhang Y
    Sci Rep; 2017 Jan; 7():40300. PubMed ID: 28074938
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-jumping Mechanism of Melting Frost on Superhydrophobic Surfaces.
    Liu X; Chen H; Zhao Z; Wang Y; Liu H; Zhang D
    Sci Rep; 2017 Nov; 7(1):14722. PubMed ID: 29116123
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Frost Self-Removal Mechanism during Defrosting on Vertical Superhydrophobic Surfaces: Peeling Off or Jumping Off.
    Chu F; Wen D; Wu X
    Langmuir; 2018 Dec; 34(48):14562-14569. PubMed ID: 30360621
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of delayed frost growth on superhydrophobic surfaces with jumping condensates: more than interdrop freezing.
    Hao Q; Pang Y; Zhao Y; Zhang J; Feng J; Yao S
    Langmuir; 2014 Dec; 30(51):15416-22. PubMed ID: 25466489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Delayed frost growth on jumping-drop superhydrophobic surfaces.
    Boreyko JB; Collier CP
    ACS Nano; 2013 Feb; 7(2):1618-27. PubMed ID: 23286736
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic Defrosting on Scalable Superhydrophobic Surfaces.
    Murphy KR; McClintic WT; Lester KC; Collier CP; Boreyko JB
    ACS Appl Mater Interfaces; 2017 Jul; 9(28):24308-24317. PubMed ID: 28653826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Delayed Frost Growth on Nanoporous Microstructured Surfaces Utilizing Jumping and Sweeping Condensates.
    Mohammadian B; Annavarapu RK; Raiyan A; Nemani SK; Kim S; Wang M; Sojoudi H
    Langmuir; 2020 Jun; 36(24):6635-6650. PubMed ID: 32418428
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic defrosting on nanostructured superhydrophobic surfaces.
    Boreyko JB; Srijanto BR; Nguyen TD; Vega C; Fuentes-Cabrera M; Collier CP
    Langmuir; 2013 Jul; 29(30):9516-24. PubMed ID: 23822157
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hierarchical Superhydrophobic Surfaces with Micropatterned Nanowire Arrays for High-Efficiency Jumping Droplet Condensation.
    Wen R; Xu S; Zhao D; Lee YC; Ma X; Yang R
    ACS Appl Mater Interfaces; 2017 Dec; 9(51):44911-44921. PubMed ID: 29214806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electric-field-enhanced condensation on superhydrophobic nanostructured surfaces.
    Miljkovic N; Preston DJ; Enright R; Wang EN
    ACS Nano; 2013 Dec; 7(12):11043-54. PubMed ID: 24261667
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Competing Effects between Condensation and Self-Removal of Water Droplets Determine Antifrosting Performance of Superhydrophobic Surfaces.
    Zhao G; Zou G; Wang W; Geng R; Yan X; He Z; Liu L; Zhou X; Lv J; Wang J
    ACS Appl Mater Interfaces; 2020 Feb; 12(6):7805-7814. PubMed ID: 31972085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Comprehensive Model of Electric-Field-Enhanced Jumping-Droplet Condensation on Superhydrophobic Surfaces.
    Birbarah P; Li Z; Pauls A; Miljkovic N
    Langmuir; 2015 Jul; 31(28):7885-96. PubMed ID: 26110977
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simple approach to superhydrophobic nanostructured Al for practical antifrosting application based on enhanced self-propelled jumping droplets.
    Kim A; Lee C; Kim H; Kim J
    ACS Appl Mater Interfaces; 2015 Apr; 7(13):7206-13. PubMed ID: 25782028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Frosting Behavior of Superhydrophobic Nanoarrays under Ultralow Temperature.
    Zhang W; Wang S; Xiao Z; Yu X; Liang C; Zhang Y
    Langmuir; 2017 Sep; 33(36):8891-8898. PubMed ID: 28829603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic Melting of Freezing Droplets on Ultraslippery Superhydrophobic Surfaces.
    Chu F; Wu X; Wang L
    ACS Appl Mater Interfaces; 2017 Mar; 9(9):8420-8425. PubMed ID: 28222256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of Methyl-Functionalized Silica Nanosprings for Superhydrophobic and Defrosting Coatings.
    Corti G; Schmiesing NC; Barrington GT; Humphreys MG; Sommers AD
    ACS Appl Mater Interfaces; 2019 Jan; 11(4):4607-4615. PubMed ID: 30615841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Suppression of Frost Nucleation Achieved Using the Nanoengineered Integral Humidity Sink Effect.
    Sun X; Rykaczewski K
    ACS Nano; 2017 Jan; 11(1):906-917. PubMed ID: 28005319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy-effective frost-free coatings based on superhydrophobic aligned nanocones.
    Xu Q; Li J; Tian J; Zhu J; Gao X
    ACS Appl Mater Interfaces; 2014 Jun; 6(12):8976-80. PubMed ID: 24912381
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient water scavenging by cooling superhydrophobic surfaces to obtain jumping water droplets from air.
    Ma X; Wang Y; Wu H; Wang Y; Yang Y
    Sci Rep; 2019 Sep; 9(1):13784. PubMed ID: 31551504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combating Frosting with Joule-Heated Liquid-Infused Superhydrophobic Coatings.
    Elsharkawy M; Tortorella D; Kapatral S; Megaridis CM
    Langmuir; 2016 May; 32(17):4278-88. PubMed ID: 27021948
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.