These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
758 related articles for article (PubMed ID: 28076232)
1. A Life-Cycle Comparison of Alternative Automobile Fuels. MacLean HL; Lave LB; Lankey R; Joshi S J Air Waste Manag Assoc; 2000 Oct; 50(10):1769-1779. PubMed ID: 28076232 [TBL] [Abstract][Full Text] [Related]
2. A life-cycle comparison of alternative automobile fuels. MacLean HL; Lave LB; Lankey R; Joshi S J Air Waste Manag Assoc; 2000 Oct; 50(10):1769-79. PubMed ID: 11288305 [TBL] [Abstract][Full Text] [Related]
3. Current and Future United States Light-Duty Vehicle Pathways: Cradle-to-Grave Lifecycle Greenhouse Gas Emissions and Economic Assessment. Elgowainy A; Han J; Ward J; Joseck F; Gohlke D; Lindauer A; Ramsden T; Biddy M; Alexander M; Barnhart S; Sutherland I; Verduzco L; Wallington TJ Environ Sci Technol; 2018 Feb; 52(4):2392-2399. PubMed ID: 29298387 [TBL] [Abstract][Full Text] [Related]
4. Alternative Fuel Vehicle Adoption Increases Fleet Gasoline Consumption and Greenhouse Gas Emissions under United States Corporate Average Fuel Economy Policy and Greenhouse Gas Emissions Standards. Jenn A; Azevedo IM; Michalek JJ Environ Sci Technol; 2016 Mar; 50(5):2165-74. PubMed ID: 26867100 [TBL] [Abstract][Full Text] [Related]
5. Well-to-wheel greenhouse gas emissions of electric versus combustion vehicles from 2018 to 2030 in the US. Challa R; Kamath D; Anctil A J Environ Manage; 2022 Apr; 308():114592. PubMed ID: 35121453 [TBL] [Abstract][Full Text] [Related]
6. Effects of ethanol on vehicle energy efficiency and implications on ethanol life-cycle greenhouse gas analysis. Yan X; Inderwildi OR; King DA; Boies AM Environ Sci Technol; 2013 Jun; 47(11):5535-44. PubMed ID: 23627549 [TBL] [Abstract][Full Text] [Related]
7. Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Hill J; Nelson E; Tilman D; Polasky S; Tiffany D Proc Natl Acad Sci U S A; 2006 Jul; 103(30):11206-10. PubMed ID: 16837571 [TBL] [Abstract][Full Text] [Related]
8. The Effect of Compression Ratio, Fuel Octane Rating, and Ethanol Content on Spark-Ignition Engine Efficiency. Leone TG; Anderson JE; Davis RS; Iqbal A; Reese RA; Shelby MH; Studzinski WM Environ Sci Technol; 2015 Sep; 49(18):10778-89. PubMed ID: 26237538 [TBL] [Abstract][Full Text] [Related]
9. Energy and emission benefits of alternative transportation liquid fuels derived from switchgrass: a fuel life cycle assessment. Wu M; Wu Y; Wang M Biotechnol Prog; 2006; 22(4):1012-24. PubMed ID: 16889378 [TBL] [Abstract][Full Text] [Related]
10. Biofuels, vehicle emissions, and urban air quality. Wallington TJ; Anderson JE; Kurtz EM; Tennison PJ Faraday Discuss; 2016 Jul; 189():121-36. PubMed ID: 27112132 [TBL] [Abstract][Full Text] [Related]
11. Content of metals in emissions from gasoline, diesel, and alternative mixed biofuels. Coufalík P; Matoušek T; Křůmal K; Vojtíšek-Lom M; Beránek V; Mikuška P Environ Sci Pollut Res Int; 2019 Oct; 26(28):29012-29019. PubMed ID: 31388949 [TBL] [Abstract][Full Text] [Related]
12. Performance and emission characteristics of CNG-fueled compression ignition engine with Ricinus communis methyl ester as pilot fuel. Mahla SK; Dhir A Environ Sci Pollut Res Int; 2019 Jan; 26(1):975-985. PubMed ID: 30421372 [TBL] [Abstract][Full Text] [Related]
13. Comparison of the emission factors of air pollutants from gasoline, CNG, LPG and diesel fueled vehicles at idle speed. Aosaf MR; Wang Y; Du K Environ Pollut; 2022 Jul; 305():119296. PubMed ID: 35427677 [TBL] [Abstract][Full Text] [Related]
14. Regional on-road vehicle running emissions modeling and evaluation for conventional and alternative vehicle technologies. Frey HC; Zhai H; Rouphail NM Environ Sci Technol; 2009 Nov; 43(21):8449-55. PubMed ID: 19924983 [TBL] [Abstract][Full Text] [Related]
15. Energy demand and emissions of a passenger vehicle fueled with CNG, gasohol, hydrous ethanol and wet ethanol based on the key points of the WLTC. Hatschbach LS; Mazer MFP; Dos Santos IR; Dalla Nora M Environ Sci Pollut Res Int; 2022 Mar; 29(13):19054-19071. PubMed ID: 34709545 [TBL] [Abstract][Full Text] [Related]
16. Toxic emissions from mobile sources: a total fuel-cycle analysis for conventional and alternative fuel vehicles. Winebrake JJ; Wang MQ; He D J Air Waste Manag Assoc; 2001 Jul; 51(7):1073-86. PubMed ID: 15658225 [TBL] [Abstract][Full Text] [Related]
17. Comparison of life cycle greenhouse gases from natural gas pathways for medium and heavy-duty vehicles. Tong F; Jaramillo P; Azevedo IM Environ Sci Technol; 2015 Jun; 49(12):7123-33. PubMed ID: 25938939 [TBL] [Abstract][Full Text] [Related]
18. On-board measurement of emissions from liquefied petroleum gas, gasoline and diesel powered passenger cars in Algeria. Chikhi S; Boughedaoui M; Kerbachi R; Joumard R J Environ Sci (China); 2014 Aug; 26(8):1651-9. PubMed ID: 25108721 [TBL] [Abstract][Full Text] [Related]
19. Comparison of Gasoline Direct-Injection (GDI) and Port Fuel Injection (PFI) Vehicle Emissions: Emission Certification Standards, Cold-Start, Secondary Organic Aerosol Formation Potential, and Potential Climate Impacts. Saliba G; Saleh R; Zhao Y; Presto AA; Lambe AT; Frodin B; Sardar S; Maldonado H; Maddox C; May AA; Drozd GT; Goldstein AH; Russell LM; Hagen F; Robinson AL Environ Sci Technol; 2017 Jun; 51(11):6542-6552. PubMed ID: 28441489 [TBL] [Abstract][Full Text] [Related]
20. Emission factors of air pollutants from CNG-gasoline bi-fuel vehicles: Part I. Black carbon. Wang Y; Xing Z; Xu H; Du K Sci Total Environ; 2016 Dec; 572():1161-1165. PubMed ID: 27528482 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]