These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 28076447)

  • 1. Lower Methane Emissions from Yak Compared with Cattle in Rusitec Fermenters.
    Mi J; Zhou J; Huang X; Long R
    PLoS One; 2017; 12(1):e0170044. PubMed ID: 28076447
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of dilution rate and retention time of concentrate on efficiency of microbial growth, methane production, and ruminal fermentation in Rusitec fermenters.
    Martínez ME; Ranilla MJ; Ramos S; Tejido ML; Carro MD
    J Dairy Sci; 2009 Aug; 92(8):3930-8. PubMed ID: 19620676
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of exogenous fibrolytic enzymes and ammonia fiber expansion on the fermentation of wheat straw in an artificial rumen system (RUSITEC)1.
    Saleem AM; Ribeiro GO; Sanderson H; Alipour D; Brand T; Hünerberg M; Yang WZ; Santos LV; McAllister TA
    J Anim Sci; 2019 Jul; 97(8):3535-3549. PubMed ID: 31260526
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of fermentation of diets of variable composition and microbial populations in the rumen of sheep and Rusitec fermenters. I. Digestibility, fermentation parameters, and microbial growth.
    Martínez ME; Ranilla MJ; Tejido ML; Ramos S; Carro MD
    J Dairy Sci; 2010 Aug; 93(8):3684-98. PubMed ID: 20655438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of the effects of cinnamon leaf oil on rumen microbial fermentation using two continuous culture systems.
    Fraser GR; Chaves AV; Wang Y; McAllister TA; Beauchemin KA; Benchaar C
    J Dairy Sci; 2007 May; 90(5):2315-28. PubMed ID: 17430934
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogen and methane emissions from beef cattle and their rumen microbial community vary with diet, time after feeding and genotype.
    Rooke JA; Wallace RJ; Duthie CA; McKain N; de Souza SM; Hyslop JJ; Ross DW; Waterhouse T; Roehe R
    Br J Nutr; 2014 Aug; 112(3):398-407. PubMed ID: 24780126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of the inclusion of Moringa oleifera seed on rumen fermentation and methane production in a beef cattle diet using the rumen simulation technique (Rusitec).
    Lins TOJD; Terry SA; Silva RR; Pereira LGR; Jancewicz LJ; He ML; Wang Y; McAllister TA; Chaves AV
    Animal; 2019 Feb; 13(2):283-291. PubMed ID: 29954468
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of engineered biocarbon on rumen fermentation, microbial protein synthesis, and methane production in an artificial rumen (RUSITEC) fed a high forage diet.
    Saleem AM; Ribeiro GO; Yang WZ; Ran T; Beauchemin KA; McGeough EJ; Ominski KH; Okine EK; McAllister TA
    J Anim Sci; 2018 Jul; 96(8):3121-3130. PubMed ID: 29912357
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of illite supplementation on in vitro and in vivo rumen fermentation, microbial population and methane emission of Hanwoo steers fed high concentrate diets.
    Biswas AA; Lee SS; Mamuad LL; Kim SH; Choi YJ; Lee C; Lee K; Bae GS; Lee SS
    Anim Sci J; 2018 Jan; 89(1):114-121. PubMed ID: 28960611
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of sward dry matter digestibility on methane production, ruminal fermentation, and microbial populations of zero-grazed beef cattle.
    Hart KJ; Martin PG; Foley PA; Kenny DA; Boland TM
    J Anim Sci; 2009 Oct; 87(10):3342-50. PubMed ID: 19542500
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of rare earth element lanthanum on rumen methane and volatile fatty acid production and microbial flora in vitro.
    Zhang TT; Zhao GY; Zheng WS; Niu WJ; Wei C; Lin SX
    J Anim Physiol Anim Nutr (Berl); 2015 Jun; 99(3):442-8. PubMed ID: 25263819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synergism of Cattle and Bison Inoculum on Ruminal Fermentation and Select Bacterial Communities in an Artificial Rumen (Rusitec) Fed a Barley Straw Based Diet.
    Oss DB; Ribeiro GO; Marcondes MI; Yang W; Beauchemin KA; Forster RJ; McAllister TA
    Front Microbiol; 2016; 7():2032. PubMed ID: 28018336
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methane production and methanogen levels in steers that differ in residual gain.
    Freetly HC; Lindholm-Perry AK; Hales KE; Brown-Brandl TM; Kim M; Myer PR; Wells JE
    J Anim Sci; 2015 May; 93(5):2375-81. PubMed ID: 26020333
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decrease of ruminal methane production in Rusitec fermenters through the addition of plant material from rhubarb (Rheum spp.) and alder buckthorn (Frangula alnus).
    García-González R; González JS; López S
    J Dairy Sci; 2010 Aug; 93(8):3755-63. PubMed ID: 20655445
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Propionibacterium spp. on ruminal fermentation, nutrient digestibility, and methane emissions in beef heifers fed a high-forage diet.
    Vyas D; McGeough EJ; McGinn SM; McAllister TA; Beauchemin KA
    J Anim Sci; 2014 May; 92(5):2192-201. PubMed ID: 24663192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid Communication: Evaluation of methane inhibitor 3-nitrooxypropanol and monensin in a high-grain diet using the rumen simulation technique (Rusitec).
    Romero-Pérez A; Okine EK; Guan LL; Duval SM; Kindermann M; Beauchemin KA
    J Anim Sci; 2017 Sep; 95(9):4072-4077. PubMed ID: 28992012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of supplementation of rice bran and fumarate alone or in combination on in vitro rumen fermentation, methanogenesis and methanogens.
    Abrar A; Kondo M; Kitamura T; Ban-Tokuda T; Matsui H
    Anim Sci J; 2016 Mar; 87(3):398-404. PubMed ID: 26388080
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proper motility enhances rumen fermentation and microbial protein synthesis with decreased saturation of dissolved gases in rumen simulation technique.
    Adebayo Arowolo M; Zhang XM; Wang M; Wang R; Wen JN; Hao LZ; He JH; Shen WJ; Ma ZY; Tan ZL
    J Dairy Sci; 2022 Jan; 105(1):231-241. PubMed ID: 34696908
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shifts in microbial populations in Rusitec fermenters as affected by the type of diet and impact of the method for estimating microbial growth (15N v. microbial DNA).
    Mateos I; Ranilla MJ; Saro C; Carro MD
    Animal; 2017 Nov; 11(11):1939-1948. PubMed ID: 28462771
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Replacing alfalfa silage with corn silage in dairy cow diets: Effects on enteric methane production, ruminal fermentation, digestion, N balance, and milk production.
    Hassanat F; Gervais R; Julien C; Massé DI; Lettat A; Chouinard PY; Petit HV; Benchaar C
    J Dairy Sci; 2013 Jul; 96(7):4553-67. PubMed ID: 23684039
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.