BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 28076691)

  • 1. Removal of copper from aqueous solutions by rhizofiltration using genetically modified hairy roots expressing a bacterial Cu-binding protein.
    Pérez-Palacios P; Agostini E; Ibáñez SG; Talano MA; Rodríguez-Llorente ID; Caviedes MA; Pajuelo E
    Environ Technol; 2017 Nov; 38(22):2877-2888. PubMed ID: 28076691
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering copper hyperaccumulation in plants by expressing a prokaryotic copC gene.
    Rodríguez-Llorente ID; Lafuente A; Doukkali B; Caviedes MA; Pajuelo E
    Environ Sci Technol; 2012 Nov; 46(21):12088-97. PubMed ID: 23020547
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting Acr3 from Ensifer medicae to the plasma membrane or to the tonoplast of tobacco hairy roots allows arsenic extrusion or improved accumulation. Effect of acr3 expression on the root transcriptome.
    Pérez-Palacios P; Funes-Pinter I; Agostini E; Talano MA; Ibáñez SG; Humphry M; Edwards K; Rodríguez-Llorente ID; Caviedes MA; Pajuelo E
    Metallomics; 2019 Nov; 11(11):1864-1886. PubMed ID: 31588944
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overexpression of Elsholtzia haichowensis metallothionein 1 (EhMT1) in tobacco plants enhances copper tolerance and accumulation in root cytoplasm and decreases hydrogen peroxide production.
    Xia Y; Qi Y; Yuan Y; Wang G; Cui J; Chen Y; Zhang H; Shen Z
    J Hazard Mater; 2012 Sep; 233-234():65-71. PubMed ID: 22818176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A stress-associated protein, LmSAP, from the halophyte Lobularia maritima provides tolerance to heavy metals in tobacco through increased ROS scavenging and metal detoxification processes.
    Saad RB; Hsouna AB; Saibi W; Hamed KB; Brini F; Ghneim-Herrera T
    J Plant Physiol; 2018 Dec; 231():234-243. PubMed ID: 30312968
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subcellular targeting of bacterial CusF enhances Cu accumulation and alters root to shoot Cu translocation in arabidopsis.
    Yu P; Yuan J; Deng X; Ma M; Zhang H
    Plant Cell Physiol; 2014 Sep; 55(9):1568-81. PubMed ID: 24951313
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression of V-PPase proton pump, singly or in combination with a NHX1 transporter, in transgenic tobacco improves copper tolerance and accumulation.
    Gouiaa S; Khoudi H
    Environ Sci Pollut Res Int; 2019 Dec; 26(36):37037-37045. PubMed ID: 31745765
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The involvement of wheat F-box protein gene TaFBA1 in the oxidative stress tolerance of plants.
    Zhou SM; Kong XZ; Kang HH; Sun XD; Wang W
    PLoS One; 2015; 10(4):e0122117. PubMed ID: 25906259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antioxidant response of tobacco (Nicotiana tabacum) hairy roots after phenol treatment.
    Sosa Alderete LG; Agostini E; Medina MI
    Plant Physiol Biochem; 2011 Sep; 49(9):1020-8. PubMed ID: 21821425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of dual inoculation with Rhizobium and PGPR on growth and antioxidant status of Vicia faba L. under copper stress.
    Fatnassi IC; Chiboub M; Saadani O; Jebara M; Jebara SH
    C R Biol; 2015 Apr; 338(4):241-54. PubMed ID: 25747267
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Double genetically modified symbiotic system for improved Cu phytostabilization in legume roots.
    Pérez-Palacios P; Romero-Aguilar A; Delgadillo J; Doukkali B; Caviedes MA; Rodríguez-Llorente ID; Pajuelo E
    Environ Sci Pollut Res Int; 2017 Jun; 24(17):14910-14923. PubMed ID: 28480491
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The garlic NF-YC gene, AsNF-YC8, positively regulates non-ionic hyperosmotic stress tolerance in tobacco.
    Sun X; Lian H; Liu X; Zhou S; Liu S
    Protoplasma; 2017 May; 254(3):1353-1366. PubMed ID: 27650870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional components of the bacterial CzcCBA efflux system reduce cadmium uptake and accumulation in transgenic tobacco plants.
    Nesler A; DalCorso G; Fasani E; Manara A; Di Sansebastiano GP; Argese E; Furini A
    N Biotechnol; 2017 Mar; 35():54-61. PubMed ID: 27902938
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Establishment of transgenic tobacco hairy roots expressing basic peroxidases and its application for phenol removal.
    Sosa Alderete LG; Talano MA; Ibáñez SG; Purro S; Agostini E; Milrad SR; Medina MI
    J Biotechnol; 2009 Feb; 139(4):273-9. PubMed ID: 19124050
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteome and physiological analyses reveal tobacco (Nicotiana tabacum) peroxidase 7 (POD 7) functions in responses to copper stress.
    Gao Q; Xu L; Li X; Yang W; Mi Q; Lu L; Liu X; Wang K; Lu Y; Chen Z; Li X; Li L
    Transgenic Res; 2022 Oct; 31(4-5):431-444. PubMed ID: 35793054
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioaccumulation of toxic metals (Cd and Cu) by Groenlandia densa (L.) Fourr.
    Kara Y; Zeytunluoglu A
    Bull Environ Contam Toxicol; 2007 Dec; 79(6):609-12. PubMed ID: 17994178
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Copper phytoextraction by Salvinia cucullata: biochemical and morphological study.
    Das S; Goswami S
    Environ Sci Pollut Res Int; 2017 Jan; 24(2):1363-1371. PubMed ID: 27778270
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transgenic tobacco plants expressing a fungal laccase are able to reduce phenol content from olive mill wastewaters.
    Chiaiese P; Palomba F; Galante C; Esposito S; De Biasi MG; Filippone E
    Int J Phytoremediation; 2012 Oct; 14(9):835-44. PubMed ID: 22908648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms of copper stress alleviation in Citrus trees after metal uptake by leaves or roots.
    Hippler FWR; Petená G; Boaretto RM; Quaggio JA; Azevedo RA; Mattos-Jr D
    Environ Sci Pollut Res Int; 2018 May; 25(13):13134-13146. PubMed ID: 29488204
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling Alleviative Effects of Ca, Mg, and K on Cu-Induced Oxidative Stress in Grapevine Roots Grown Hydroponically.
    Juang KW; Lo YJ; Chen BC
    Molecules; 2021 Sep; 26(17):. PubMed ID: 34500790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.