BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

498 related articles for article (PubMed ID: 28077316)

  • 1. Chromatin dynamics regulate mesenchymal stem cell lineage specification and differentiation to osteogenesis.
    Wu H; Gordon JA; Whitfield TW; Tai PW; van Wijnen AJ; Stein JL; Stein GS; Lian JB
    Biochim Biophys Acta Gene Regul Mech; 2017 Apr; 1860(4):438-449. PubMed ID: 28077316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epigenetic Signatures at the RUNX2-P1 and Sp7 Gene Promoters Control Osteogenic Lineage Commitment of Umbilical Cord-Derived Mesenchymal Stem Cells.
    Sepulveda H; Aguilar R; Prieto CP; Bustos F; Aedo S; Lattus J; van Zundert B; Palma V; Montecino M
    J Cell Physiol; 2017 Sep; 232(9):2519-2527. PubMed ID: 27689934
    [TBL] [Abstract][Full Text] [Related]  

  • 3. EZH2 and KDM6A act as an epigenetic switch to regulate mesenchymal stem cell lineage specification.
    Hemming S; Cakouros D; Isenmann S; Cooper L; Menicanin D; Zannettino A; Gronthos S
    Stem Cells; 2014 Mar; 32(3):802-15. PubMed ID: 24123378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of Novel EZH2 Targets Regulating Osteogenic Differentiation in Mesenchymal Stem Cells.
    Hemming S; Cakouros D; Vandyke K; Davis MJ; Zannettino AC; Gronthos S
    Stem Cells Dev; 2016 Jun; 25(12):909-21. PubMed ID: 27168161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long non-coding RNA HoxA-AS3 interacts with EZH2 to regulate lineage commitment of mesenchymal stem cells.
    Zhu XX; Yan YW; Chen D; Ai CZ; Lu X; Xu SS; Jiang S; Zhong GS; Chen DB; Jiang YZ
    Oncotarget; 2016 Sep; 7(39):63561-63570. PubMed ID: 27566578
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epigenetic Library Screen Identifies Abexinostat as Novel Regulator of Adipocytic and Osteoblastic Differentiation of Human Skeletal (Mesenchymal) Stem Cells.
    Ali D; Hamam R; Alfayez M; Kassem M; Aldahmash A; Alajez NM
    Stem Cells Transl Med; 2016 Aug; 5(8):1036-47. PubMed ID: 27194745
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromatin Changes at the PPAR-γ2 Promoter During Bone Marrow-Derived Multipotent Stromal Cell Culture Correlate With Loss of Gene Activation Potential.
    Lynch PJ; Thompson EE; McGinnis K; Rovira Gonzalez YI; Lo Surdo J; Bauer SR; Hursh DA
    Stem Cells; 2015 Jul; 33(7):2169-81. PubMed ID: 25640287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tet-Mediated DNA Demethylation Is Required for SWI/SNF-Dependent Chromatin Remodeling and Histone-Modifying Activities That Trigger Expression of the Sp7 Osteoblast Master Gene during Mesenchymal Lineage Commitment.
    Sepulveda H; Villagra A; Montecino M
    Mol Cell Biol; 2017 Oct; 37(20):. PubMed ID: 28784721
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA methylation restricts spontaneous multi-lineage differentiation of mesenchymal progenitor cells, but is stable during growth factor-induced terminal differentiation.
    Hupkes M; van Someren EP; Middelkamp SH; Piek E; van Zoelen EJ; Dechering KJ
    Biochim Biophys Acta; 2011 May; 1813(5):839-49. PubMed ID: 21277338
    [TBL] [Abstract][Full Text] [Related]  

  • 10. LncMIR181A1HG is a novel chromatin-bound epigenetic suppressor of early stage osteogenic lineage commitment.
    Tye CE; Ghule PN; Gordon JAR; Kabala FS; Page NA; Falcone MM; Tracy KM; van Wijnen AJ; Stein JL; Lian JB; Stein GS
    Sci Rep; 2022 May; 12(1):7770. PubMed ID: 35546168
    [TBL] [Abstract][Full Text] [Related]  

  • 11. JMJD3 aids in reprogramming of bone marrow progenitor cells to hepatic phenotype through epigenetic activation of hepatic transcription factors.
    Kochat V; Equbal Z; Baligar P; Kumar V; Srivastava M; Mukhopadhyay A
    PLoS One; 2017; 12(3):e0173977. PubMed ID: 28328977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epigenetic marks define the lineage and differentiation potential of two distinct neural crest-derived intermediate odontogenic progenitor populations.
    Gopinathan G; Kolokythas A; Luan X; Diekwisch TG
    Stem Cells Dev; 2013 Jun; 22(12):1763-78. PubMed ID: 23379639
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative epigenetic influence of autologous versus fetal bovine serum on mesenchymal stem cells through in vitro osteogenic and adipogenic differentiation.
    Fani N; Ziadlou R; Shahhoseini M; Baghaban Eslaminejad M
    Exp Cell Res; 2016 Jun; 344(2):176-82. PubMed ID: 26481420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The regulatory landscape of osteogenic differentiation.
    Håkelien AM; Bryne JC; Harstad KG; Lorenz S; Paulsen J; Sun J; Mikkelsen TS; Myklebost O; Meza-Zepeda LA
    Stem Cells; 2014 Oct; 32(10):2780-93. PubMed ID: 24898411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An epigenetic signature of developmental potential in neural stem cells and early neurons.
    Burney MJ; Johnston C; Wong KY; Teng SW; Beglopoulos V; Stanton LW; Williams BP; Bithell A; Buckley NJ
    Stem Cells; 2013 Sep; 31(9):1868-80. PubMed ID: 23712654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Osteogenic Stimulation of Human Adipose-Derived Mesenchymal Stem Cells Using a Fungal Metabolite That Suppresses the Polycomb Group Protein EZH2.
    Samsonraj RM; Dudakovic A; Manzar B; Sen B; Dietz AB; Cool SM; Rubin J; van Wijnen AJ
    Stem Cells Transl Med; 2018 Feb; 7(2):197-209. PubMed ID: 29280310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The osteogenic or adipogenic lineage commitment of human mesenchymal stem cells is determined by protein kinase C delta.
    Lee S; Cho HY; Bui HT; Kang D
    BMC Cell Biol; 2014 Nov; 15():42. PubMed ID: 25420887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Histone H3 modifications associated with differentiation and long-term culture of mesenchymal adipose stem cells.
    Noer A; Lindeman LC; Collas P
    Stem Cells Dev; 2009 Jun; 18(5):725-36. PubMed ID: 18771397
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of Three Early Phases of Cell-Fate Determination during Osteogenic and Adipogenic Differentiation by Transcription Factor Dynamics.
    van de Peppel J; Strini T; Tilburg J; Westerhoff H; van Wijnen AJ; van Leeuwen JP
    Stem Cell Reports; 2017 Apr; 8(4):947-960. PubMed ID: 28344004
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MAP Kinase-Dependent RUNX2 Phosphorylation Is Necessary for Epigenetic Modification of Chromatin During Osteoblast Differentiation.
    Li Y; Ge C; Franceschi RT
    J Cell Physiol; 2017 Sep; 232(9):2427-2435. PubMed ID: 27514023
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.