These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 28077663)

  • 21. Precision of the pacemaker nucleus in a weakly electric fish: network versus cellular influences.
    Moortgat KT; Bullock TH; Sejnowski TJ
    J Neurophysiol; 2000 Feb; 83(2):971-83. PubMed ID: 10669509
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Primary somatosensory cortex modulation of tactile responses in nucleus gracilis cells of rats.
    Malmierca E; Nuñez A
    Eur J Neurosci; 2004 Mar; 19(6):1572-80. PubMed ID: 15066153
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhanced excitatory and reduced inhibitory synaptic transmission contribute to persistent pain-induced neuronal hyper-responsiveness in anterior cingulate cortex.
    Gong KR; Cao FL; He Y; Gao CY; Wang DD; Li H; Zhang FK; An YY; Lin Q; Chen J
    Neuroscience; 2010 Dec; 171(4):1314-25. PubMed ID: 20951771
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Integration of broadband conductance input in rat somatosensory cortical inhibitory interneurons: an inhibition-controlled switch between intrinsic and input-driven spiking in fast-spiking cells.
    Tateno T; Robinson HP
    J Neurophysiol; 2009 Feb; 101(2):1056-72. PubMed ID: 19091918
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Non-NMDA receptor-mediated vibrotactile responses of neurons from the hindpaw representation in the rat SI cortex.
    Vardar B; Güçlü B
    Somatosens Mot Res; 2017 Sep; 34(3):189-203. PubMed ID: 29096588
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Correlation between neural spike trains increases with firing rate.
    de la Rocha J; Doiron B; Shea-Brown E; Josić K; Reyes A
    Nature; 2007 Aug; 448(7155):802-6. PubMed ID: 17700699
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synaptic plasticity in rat subthalamic nucleus induced by high-frequency stimulation.
    Shen KZ; Zhu ZT; Munhall A; Johnson SW
    Synapse; 2003 Dec; 50(4):314-9. PubMed ID: 14556236
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synchronized gamma-frequency inhibition in neocortex depends on excitatory-inhibitory interactions but not electrical synapses.
    Neske GT; Connors BW
    J Neurophysiol; 2016 Aug; 116(2):351-68. PubMed ID: 27121576
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tetanic stimulation induces short-term potentiation of inhibitory synaptic activity in the rostral nucleus of the solitary tract.
    Grabauskas G; Bradley RM
    J Neurophysiol; 1998 Feb; 79(2):595-604. PubMed ID: 9463424
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Assessing the Impact of Single-Cell Stimulation on Local Networks in Rat Barrel Cortex-A Feasibility Study.
    Knauer B; Stüttgen MC
    Int J Mol Sci; 2019 May; 20(10):. PubMed ID: 31137894
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Slowly inactivating sodium current (I(NaP)) underlies single-spike activity in rat subthalamic neurons.
    Beurrier C; Bioulac B; Hammond C
    J Neurophysiol; 2000 Apr; 83(4):1951-7. PubMed ID: 10758106
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Differential Excitation of Distally versus Proximally Targeting Cortical Interneurons by Unitary Thalamocortical Bursts.
    Hu H; Agmon A
    J Neurosci; 2016 Jun; 36(26):6906-16. PubMed ID: 27358449
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cell type- and activity-dependent extracellular correlates of intracellular spiking.
    Anastassiou CA; Perin R; Buzsáki G; Markram H; Koch C
    J Neurophysiol; 2015 Jul; 114(1):608-23. PubMed ID: 25995352
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cell Type-Specific Control of Spike Timing by Gamma-Band Oscillatory Inhibition.
    Hasenstaub A; Otte S; Callaway E
    Cereb Cortex; 2016 Feb; 26(2):797-806. PubMed ID: 25778344
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reliable control of spike rate and spike timing by rapid input transients in cerebellar stellate cells.
    Suter KJ; Jaeger D
    Neuroscience; 2004; 124(2):305-17. PubMed ID: 14980381
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rate maintenance and resonance in the entorhinal cortex.
    Haas JS; Kreuz T; Torcini A; Politi A; Abarbanel HD
    Eur J Neurosci; 2010 Dec; 32(11):1930-9. PubMed ID: 21044179
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dopaminergic modulation of short-term synaptic plasticity in fast-spiking interneurons of primate dorsolateral prefrontal cortex.
    Gonzalez-Burgos G; Kroener S; Seamans JK; Lewis DA; Barrionuevo G
    J Neurophysiol; 2005 Dec; 94(6):4168-77. PubMed ID: 16148267
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spike timing-dependent synaptic depression in the in vivo barrel cortex of the rat.
    Jacob V; Brasier DJ; Erchova I; Feldman D; Shulz DE
    J Neurosci; 2007 Feb; 27(6):1271-84. PubMed ID: 17287502
    [TBL] [Abstract][Full Text] [Related]  

  • 39. ALX 1393 inhibits spontaneous network activity by inducing glycinergic tonic currents in the spinal ventral horn.
    Eckle VS; Antkowiak B
    Neuroscience; 2013 Dec; 253():165-71. PubMed ID: 23994185
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanisms underlying burst and regular spiking evoked by dendritic depolarization in layer 5 cortical pyramidal neurons.
    Schwindt P; Crill W
    J Neurophysiol; 1999 Mar; 81(3):1341-54. PubMed ID: 10085360
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.