These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Aerodynamic consequences of wing morphing during emulated take-off and gliding in birds. Klaassen van Oorschot B; Mistick EA; Tobalske BW J Exp Biol; 2016 Oct; 219(Pt 19):3146-3154. PubMed ID: 27473437 [TBL] [Abstract][Full Text] [Related]
5. Experimental optimization of wing shape for a hummingbird-like flapping wing micro air vehicle. Nan Y; Karásek M; Lalami ME; Preumont A Bioinspir Biomim; 2017 Mar; 12(2):026010. PubMed ID: 28128732 [TBL] [Abstract][Full Text] [Related]
6. Flapping wing aerodynamics: from insects to vertebrates. Chin DD; Lentink D J Exp Biol; 2016 Apr; 219(Pt 7):920-32. PubMed ID: 27030773 [TBL] [Abstract][Full Text] [Related]
7. The effects of wing twist in slow-speed flapping flight of birds: trading brute force against efficiency. Thielicke W; Stamhuis EJ Bioinspir Biomim; 2018 Aug; 13(5):056015. PubMed ID: 30043756 [TBL] [Abstract][Full Text] [Related]
8. Hummingbird wing efficacy depends on aspect ratio and compares with helicopter rotors. Kruyt JW; Quicazán-Rubio EM; van Heijst GF; Altshuler DL; Lentink D J R Soc Interface; 2014 Oct; 11(99):. PubMed ID: 25079868 [TBL] [Abstract][Full Text] [Related]
9. Power reduction and the radial limit of stall delay in revolving wings of different aspect ratio. Kruyt JW; van Heijst GF; Altshuler DL; Lentink D J R Soc Interface; 2015 Apr; 12(105):. PubMed ID: 25788539 [TBL] [Abstract][Full Text] [Related]
10. Effects of flexibility and aspect ratio on the aerodynamic performance of flapping wings. Fu J; Liu X; Shyy W; Qiu H Bioinspir Biomim; 2018 Mar; 13(3):036001. PubMed ID: 29372888 [TBL] [Abstract][Full Text] [Related]
11. How the hummingbird wingbeat is tuned for efficient hovering. Ingersoll R; Lentink D J Exp Biol; 2018 Oct; 221(Pt 20):. PubMed ID: 30323114 [TBL] [Abstract][Full Text] [Related]
12. Efficiency of lift production in flapping and gliding flight of swifts. Henningsson P; Hedenström A; Bomphrey RJ PLoS One; 2014; 9(2):e90170. PubMed ID: 24587260 [TBL] [Abstract][Full Text] [Related]
13. Scaling trends of bird's alular feathers in connection to leading-edge vortex flow over hand-wing. Linehan T; Mohseni K Sci Rep; 2020 May; 10(1):7905. PubMed ID: 32404925 [TBL] [Abstract][Full Text] [Related]
14. Feather roughness reduces flow separation during low Reynolds number glides of swifts. van Bokhorst E; de Kat R; Elsinga GE; Lentink D J Exp Biol; 2015 Oct; 218(Pt 20):3179-91. PubMed ID: 26347563 [TBL] [Abstract][Full Text] [Related]
15. Scaling of bird wings and feathers for efficient flight. Sullivan TN; Meyers MA; Arzt E Sci Adv; 2019 Jan; 5(1):eaat4269. PubMed ID: 30746435 [TBL] [Abstract][Full Text] [Related]
16. Morphological and kinematic basis of the hummingbird flight stroke: scaling of flight muscle transmission ratio. Hedrick TL; Tobalske BW; Ros IG; Warrick DR; Biewener AA Proc Biol Sci; 2012 May; 279(1735):1986-92. PubMed ID: 22171086 [TBL] [Abstract][Full Text] [Related]
17. Structure of the vortex wake in hovering Anna's hummingbirds (Calypte anna). Wolf M; Ortega-Jimenez VM; Dudley R Proc Biol Sci; 2013 Dec; 280(1773):20132391. PubMed ID: 24174113 [TBL] [Abstract][Full Text] [Related]
18. Aerodynamic effects of flexibility in flapping wings. Zhao L; Huang Q; Deng X; Sane SP J R Soc Interface; 2010 Mar; 7(44):485-97. PubMed ID: 19692394 [TBL] [Abstract][Full Text] [Related]
19. Gliding swifts attain laminar flow over rough wings. Lentink D; de Kat R PLoS One; 2014; 9(6):e99901. PubMed ID: 24964089 [TBL] [Abstract][Full Text] [Related]
20. Active wing-pitching mechanism in hummingbird escape maneuvers. Nasirul Haque M; Cheng B; Tobalske BW; Luo H Bioinspir Biomim; 2023 Aug; 18(5):. PubMed ID: 37567187 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]