These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 28077913)

  • 1. Understanding changes in the hydrological behaviour within a karst aquifer (Lurbach system, Austria).
    Mayaud C; Wagner T; Benischke R; Birk S
    Carbonates Evaporites; 2016; 31(4):357-365. PubMed ID: 28077913
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single event time series analysis in a binary karst catchment evaluated using a groundwater model (Lurbach system, Austria).
    Mayaud C; Wagner T; Benischke R; Birk S
    J Hydrol (Amst); 2014 Apr; 511(100):628-639. PubMed ID: 24748687
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical study of groundwater flow cycling controlled by seawater/freshwater interaction in a coastal karst aquifer through conduit network using CFPv2.
    Xu Z; Hu BX; Davis H; Kish S
    J Contam Hydrol; 2015 Nov; 182():131-45. PubMed ID: 26387032
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation of Regional Karst Aquifer System and Assessment of Groundwater Resources in Manatí-Vega Baja, Puerto Rico.
    Maihemuti B; Ghasemizadeh R; Yu X; Padilla I; Alshawabkeh AN
    J Water Resour Prot; 2015 Aug; 7(12):909-922. PubMed ID: 31131072
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Responses of Spring Discharge to Different Rainfall Events for Single-Conduit Karst Aquifers in Western Hunan Province, China.
    Chang W; Wan J; Tan J; Wang Z; Jiang C; Huang K
    Int J Environ Res Public Health; 2021 May; 18(11):. PubMed ID: 34072196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An evaluation of semidistributed-pipe-network and distributed-finite-difference models to simulate karst systems.
    Gill LW; Schuler P; Duran L; Morrissey P; Johnston PM
    Hydrogeol J; 2021; 29(1):259-279. PubMed ID: 33603565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical simulation and protection of the dynamic change of Jinan karst spring based on coupling of seepage and conduit flow.
    Li C; Xing L; Dong Y; Peng Y; Xing X; Li C; Zhao Z
    Heliyon; 2022 Sep; 8(9):e10428. PubMed ID: 36060469
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modifications to the Conduit Flow Process Mode 2 for MODFLOW-2005.
    Reimann T; Birk S; Rehrl C; Shoemaker WB
    Ground Water; 2012; 50(1):144-8. PubMed ID: 21371024
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved regional groundwater flow modeling using drainage features: a case study of the central northern karst aquifer system of Puerto Rico (USA).
    Ghasemizadeh R; Yu X; Butscher C; Padilla IY; Alshawabkeh A
    Hydrogeol J; 2016 Sep; 24(6):1463-1478. PubMed ID: 30416370
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studying the flow dynamics of a karst aquifer system with an equivalent porous medium model.
    Abusaada M; Sauter M
    Ground Water; 2013; 51(4):641-50. PubMed ID: 23039080
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrological response of karst stream to precipitation variation recognized through the quantitative separation of runoff components.
    Wang F; Chen H; Lian J; Fu Z; Nie Y
    Sci Total Environ; 2020 Dec; 748():142483. PubMed ID: 33113671
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of the MODFLOW-2005 Conduit Flow Process.
    Hill ME; Stewart MT; Martin A
    Ground Water; 2010; 48(4):549-59. PubMed ID: 20113361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling solute reactivity in a phreatic solution conduit penetrating a karst aquifer.
    Field MS; Schiesser WE
    J Contam Hydrol; 2018 Oct; 217():52-70. PubMed ID: 30274863
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure identification of a karst groundwater system based on high-resolution rainfall-hydrological response characteristics.
    Wang Z; Wu R; Huang K; Qiu Y; Li Z; Lv Y; Wan J
    Environ Sci Pollut Res Int; 2022 Apr; 29(18):26922-26935. PubMed ID: 34860345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dataset on onshore groundwaters and offshore submarine spring of a Mediterranean karst aquifer during flow reversal and saltwater intrusion.
    Ladouche B; Maréchal JC; Lamotte C; Durand V; Bailly-Comte V; Hakoun V
    Data Brief; 2023 Oct; 50():109557. PubMed ID: 37753263
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conceptualization of Karstic Aquifer with Multiple Outlets Using a Dual Porosity Model.
    Hosseini SM; Ataie-Ashtiani B
    Ground Water; 2017 Jul; 55(4):558-564. PubMed ID: 28208223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterizing the transitory groundwater-surface water interaction and its environmental consequence of a riverside karst pool.
    Jiang G; Guo F; Wei L; Li W
    Sci Total Environ; 2023 Dec; 902():166532. PubMed ID: 37625732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative hydro-geophysical analysis of a complex structural karst aquifer in Eastern Saudi Arabia.
    Alfy ME; Lashin A; Faraj T; Alataway A; Tarawneh Q; Al-Bassam A
    Sci Rep; 2019 Feb; 9(1):2825. PubMed ID: 30809015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transport of road salt contamination in karst aquifers and soils over multiple timescales.
    Robinson HK; Hasenmueller EA
    Sci Total Environ; 2017 Dec; 603-604():94-108. PubMed ID: 28623795
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Review: Groundwater flow and transport modeling of karst aquifers, with particular reference to the North Coast Limestone aquifer system of Puerto Rico.
    Ghasemizadeh R; Hellweger F; Butscher C; Padilla I; Vesper D; Field M; Alshawabkeh A
    Hydrogeol J; 2012 Dec; 20(8):1441-1461. PubMed ID: 23645996
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.