BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 28077967)

  • 1. Integrated omics analyses reveal the details of metabolic adaptation of
    Poudel S; Giannone RJ; Rodriguez M; Raman B; Martin MZ; Engle NL; Mielenz JR; Nookaew I; Brown SD; Tschaplinski TJ; Ussery D; Hettich RL
    Biotechnol Biofuels; 2017; 10():14. PubMed ID: 28077967
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomass augmentation through thermochemical pretreatments greatly enhances digestion of switchgrass by
    Kothari N; Holwerda EK; Cai CM; Kumar R; Wyman CE
    Biotechnol Biofuels; 2018; 11():219. PubMed ID: 30087696
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of switchgrass loadings on feedstock solubilization and biofuel production by
    Verbeke TJ; Garcia GM; Elkins JG
    Biotechnol Biofuels; 2017; 10():233. PubMed ID: 29213307
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of pretreated Switchgrass and biomass carbohydrates on Clostridium thermocellum ATCC 27405 cellulosome composition: a quantitative proteomic analysis.
    Raman B; Pan C; Hurst GB; Rodriguez M; McKeown CK; Lankford PK; Samatova NF; Mielenz JR
    PLoS One; 2009; 4(4):e5271. PubMed ID: 19384422
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How does cellulosome composition influence deconstruction of lignocellulosic substrates in
    Yoav S; Barak Y; Shamshoum M; Borovok I; Lamed R; Dassa B; Hadar Y; Morag E; Bayer EA
    Biotechnol Biofuels; 2017; 10():222. PubMed ID: 28932263
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced depolymerization and utilization of raw lignocellulosic material by co-cultures of Ruminiclostridium thermocellum with hemicellulose-utilizing partners.
    Froese A; Schellenberg J; Sparling R
    Can J Microbiol; 2019 Apr; 65(4):296-307. PubMed ID: 30608879
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Declining carbohydrate solubilization with increasing solids loading during fermentation of cellulosic feedstocks by Clostridium thermocellum: documentation and diagnostic tests.
    Kubis MR; Holwerda EK; Lynd LR
    Biotechnol Biofuels Bioprod; 2022 Feb; 15(1):12. PubMed ID: 35418299
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Omics-based analyses revealed metabolic responses of
    Liu H; Zhang J; Yuan J; Jiang X; Jiang L; Zhao G; Huang D; Liu B
    Biotechnol Biofuels; 2019; 12():101. PubMed ID: 31057667
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The diversity and specificity of the extracellular proteome in the cellulolytic bacterium
    Poudel S; Giannone RJ; Basen M; Nookaew I; Poole FL; Kelly RM; Adams MWW; Hettich RL
    Biotechnol Biofuels; 2018; 11():80. PubMed ID: 29588665
    [TBL] [Abstract][Full Text] [Related]  

  • 10.
    Jacobson TB; Korosh TK; Stevenson DM; Foster C; Maranas C; Olson DG; Lynd LR; Amador-Noguez D
    mSystems; 2020 Mar; 5(2):. PubMed ID: 32184362
    [No Abstract]   [Full Text] [Related]  

  • 11. The emergence of Clostridium thermocellum as a high utility candidate for consolidated bioprocessing applications.
    Akinosho H; Yee K; Close D; Ragauskas A
    Front Chem; 2014; 2():66. PubMed ID: 25207268
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lignocellulosic saccharification by a newly isolated bacterium, Ruminiclostridium thermocellum M3 and cellular cellulase activities for high ratio of glucose to cellobiose.
    Sheng T; Zhao L; Gao LF; Liu WZ; Cui MH; Guo ZC; Ma XD; Ho SH; Wang AJ
    Biotechnol Biofuels; 2016; 9():172. PubMed ID: 27525041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Down-regulation of the caffeic acid O-methyltransferase gene in switchgrass reveals a novel monolignol analog.
    Tschaplinski TJ; Standaert RF; Engle NL; Martin MZ; Sangha AK; Parks JM; Smith JC; Samuel R; Jiang N; Pu Y; Ragauskas AJ; Hamilton CY; Fu C; Wang ZY; Davison BH; Dixon RA; Mielenz JR
    Biotechnol Biofuels; 2012 Sep; 5(1):71. PubMed ID: 22998926
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isotope-Assisted Metabolite Analysis Sheds Light on Central Carbon Metabolism of a Model Cellulolytic Bacterium
    Xiong W; Lo J; Chou KJ; Wu C; Magnusson L; Dong T; Maness P
    Front Microbiol; 2018; 9():1947. PubMed ID: 30190711
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteomic analysis of Clostridium thermocellum ATCC 27405 reveals the upregulation of an alternative transhydrogenase-malate pathway and nitrogen assimilation in cells grown on cellulose.
    Burton E; Martin VJ
    Can J Microbiol; 2012 Dec; 58(12):1378-88. PubMed ID: 23210995
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growth and expression of relevant metabolic genes of Clostridium thermocellum cultured on lignocellulosic residues.
    Leitão VO; Noronha EF; Camargo BR; Hamann PRV; Steindorff AS; Quirino BF; de Sousa MV; Ulhoa CJ; Felix CR
    J Ind Microbiol Biotechnol; 2017 Jun; 44(6):825-834. PubMed ID: 28181082
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermodynamic analysis of the pathway for ethanol production from cellobiose in Clostridium thermocellum.
    Dash S; Olson DG; Joshua Chan SH; Amador-Noguez D; Lynd LR; Maranas CD
    Metab Eng; 2019 Sep; 55():161-169. PubMed ID: 31220663
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-scale metabolic analysis of Clostridium thermocellum for bioethanol production.
    Roberts SB; Gowen CM; Brooks JP; Fong SS
    BMC Syst Biol; 2010 Mar; 4():31. PubMed ID: 20307315
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic characterization of annotated glycolytic enzymes present in cellulose-fermenting Clostridium thermocellum suggests different metabolic roles.
    Daley SR; Gallanosa PM; Sparling R
    Biotechnol Biofuels Bioprod; 2023 Jul; 16(1):112. PubMed ID: 37438781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring the Relationship Between
    Wang F; Wang M; Zhao Q; Niu K; Liu S; He D; Liu Y; Xu S; Fang X
    Front Microbiol; 2019; 10():2035. PubMed ID: 31551972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.