These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 28078105)

  • 21. Alterations in Mc1r gene expression are associated with regressive pigmentation in Astyanax cavefish.
    Stahl BA; Gross JB
    Dev Genes Evol; 2015 Nov; 225(6):367-75. PubMed ID: 26462499
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Prox 1 in eye degeneration and sensory organ compensation during development and evolution of the cavefish Astyanax.
    Jeffery W; Strickler A; Guiney S; Heyser D; Tomarev S
    Dev Genes Evol; 2000 May; 210(5):223-30. PubMed ID: 11180826
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evolutionary tuning of an adaptive behavior requires enhancement of the neuromast sensory system.
    Yoshizawa M; Jeffery WR
    Commun Integr Biol; 2011 Jan; 4(1):89-91. PubMed ID: 21509190
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evolution of a behavioral shift mediated by superficial neuromasts helps cavefish find food in darkness.
    Yoshizawa M; Goricki S; Soares D; Jeffery WR
    Curr Biol; 2010 Sep; 20(18):1631-6. PubMed ID: 20705469
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sensing in the dark: Constructive evolution of the lateral line system in blind populations of
    Rodríguez-Morales R
    Ecol Evol; 2024 Apr; 14(4):e11286. PubMed ID: 38654714
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantitative trait loci concentrate in specific regions of the Mexican cavefish genome and reveal key candidate genes for cave-associated evolution.
    Wiese J; Richards E; Kowalko JE; McGaugh SE
    J Hered; 2024 Jul; ():. PubMed ID: 39079020
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An analysis of lateralized neural crest marker expression across development in the Mexican tetra,
    Gross JB; Berning D; Phelps A; Luc H
    Front Cell Dev Biol; 2023; 11():1074616. PubMed ID: 36875772
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genetic mapping of craniofacial traits in the Mexican tetra reveals loci associated with bite differences between cave and surface fish.
    Powers AK; Hyacinthe C; Riddle MR; Kim YK; Amaismeier A; Thiel K; Martineau B; Ferrante E; Moran RL; McGaugh SE; Boggs TE; Gross JB; Tabin CJ
    BMC Ecol Evol; 2023 Aug; 23(1):41. PubMed ID: 37626324
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Craniofacial skeleton of MEXICAN tetra (Astyanax mexicanus): As a bone disease model.
    Atukorala ADS; Bhatia V; Ratnayake R
    Dev Dyn; 2019 Feb; 248(2):153-161. PubMed ID: 30450697
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Distinct genetic architecture underlies the emergence of sleep loss and prey-seeking behavior in the Mexican cavefish.
    Yoshizawa M; Robinson BG; Duboué ER; Masek P; Jaggard JB; O'Quin KE; Borowsky RL; Jeffery WR; Keene AC
    BMC Biol; 2015 Feb; 13():15. PubMed ID: 25761998
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hypocretin underlies the evolution of sleep loss in the Mexican cavefish.
    Jaggard JB; Stahl BA; Lloyd E; Prober DA; Duboue ER; Keene AC
    Elife; 2018 Feb; 7():. PubMed ID: 29405117
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CRISPR mutagenesis confirms the role of oca2 in melanin pigmentation in Astyanax mexicanus.
    Klaassen H; Wang Y; Adamski K; Rohner N; Kowalko JE
    Dev Biol; 2018 Sep; 441(2):313-318. PubMed ID: 29555241
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sensory evolution in a cavefish radiation: patterns of neuromast distribution and associated behaviour in
    Chen B; Mao T; Liu Y; Dai W; Li X; Rajput AP; Pie MR; Yang J; Gross JB; Meegaskumbura M
    Proc Biol Sci; 2022 Oct; 289(1984):20221641. PubMed ID: 36476002
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evidence for multiple genetic forms with similar eyeless phenotypes in the blind cavefish, Astyanax mexicanus.
    Dowling TE; Martasian DP; Jeffery WR
    Mol Biol Evol; 2002 Apr; 19(4):446-55. PubMed ID: 11919286
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modularity and sense organs in the blind cavefish, Astyanax mexicanus.
    Franz-Odendaal TA; Hall BK
    Evol Dev; 2006; 8(1):94-100. PubMed ID: 16409386
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mc1r gene in Astroblepus pholeter and Astyanax mexicanus: Convergent regressive evolution of pigmentation across cavefish species.
    Espinasa L; Robinson J; Espinasa M
    Dev Biol; 2018 Sep; 441(2):305-310. PubMed ID: 30031757
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Adaptive evolution of eye degeneration in the Mexican blind cavefish.
    Jeffery WR
    J Hered; 2005; 96(3):185-96. PubMed ID: 15653557
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evolutionary Genetics of the Cavefish Astyanax mexicanus.
    Casane D; Rétaux S
    Adv Genet; 2016; 95():117-59. PubMed ID: 27503356
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Early adipogenesis contributes to excess fat accumulation in cave populations of Astyanax mexicanus.
    Xiong S; Krishnan J; Peuß R; Rohner N
    Dev Biol; 2018 Sep; 441(2):297-304. PubMed ID: 29883659
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Blind cavefish and heat shock protein chaperones: a novel role for hsp90alpha in lens apoptosis.
    Hooven TA; Yamamoto Y; Jeffery WR
    Int J Dev Biol; 2004; 48(8-9):731-8. PubMed ID: 15558465
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.