These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 2807820)

  • 1. Measurement of distensibility of blood vessels using cineangiograms.
    Sugahara T; Yanagihara Y; Uyama C; Maeda H; Takafuchi M; Azumi T
    Invest Radiol; 1989 Sep; 24(9):672-7. PubMed ID: 2807820
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Statistical considerations on the precision of assessing blood vessel diameter in cine coronary angiography.
    Sandor T; Spears JR
    Comput Biomed Res; 1985 Dec; 18(6):531-43. PubMed ID: 4075787
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computerized image analysis for quantitative measurement of vessel diameter from cineangiograms.
    Spears JR; Sandor T; Als AV; Malagold M; Markis JE; Grossman W; Serur JR; Paulin S
    Circulation; 1983 Aug; 68(2):453-61. PubMed ID: 6861322
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Algorithm effects on computerized vessel analysis from digitized cine film and a new method of generating the centerline of a vessel.
    Yanagihara Y; Sugahara T
    Int J Card Imaging; 1994 Mar; 10(1):53-60. PubMed ID: 8021531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Accuracy of detecting stenotic changes on coronary cineangiograms using computer image processing].
    Sugahara T; Kimura K; Maeda H
    Nihon Igaku Hoshasen Gakkai Zasshi; 1990 May; 50(5):533-8. PubMed ID: 2388821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Digital image process basic technology for measurement of vessel diameter using cineangiograms].
    Yanagihara Y; Sugahara T; Sugimoto N; Ohie T; Uyama C; Wakamatsu T
    Kokyu To Junkan; 1990 May; 38(5):431-4. PubMed ID: 2371455
    [No Abstract]   [Full Text] [Related]  

  • 7. Automatic detection method of stenotic lesions in coronary cineangiograms.
    Sugahara T; Maeda H; Yanagihara Y
    Int J Card Imaging; 1989; 5(1):17-23. PubMed ID: 2614076
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arteriographic evaluation of small coronary arteries.
    Bruschke AV; Padmos I; Buis B; Van Benthem A
    J Am Coll Cardiol; 1990 Mar; 15(4):784-9. PubMed ID: 2307787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantification of 3-D coronary arterial motion using clinical biplane cineangiograms.
    Ding Z; Friedman MH
    Int J Card Imaging; 2000 Oct; 16(5):331-46. PubMed ID: 11215918
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coronary artery: quantitative evaluation of normal diameter determined with electron-beam CT compared with cine coronary angiography initial experience.
    Funabashi N; Kobayashi Y; Perlroth M; Rubin GD
    Radiology; 2003 Jan; 226(1):263-71. PubMed ID: 12511700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automatic evaluation of vessel diameter variation from 2D X-ray angiography.
    M'hiri F; Duong L; Desrosiers C; Dahdah N; MirĂ³ J; Cheriet M
    Int J Comput Assist Radiol Surg; 2017 Nov; 12(11):1867-1876. PubMed ID: 28707212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D-reconstruction of coronary arteries in view of flow measurement.
    Guggenheim N; Chappuis F; Suilen C; Doriot PA; Dorsaz PA; Descouts P; Rutishauser W
    Int J Card Imaging; 1992; 8(4):265-72. PubMed ID: 1464726
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptive approach to accurate analysis of small-diameter vessels in cineangiograms.
    Sonka M; Reddy GK; Winniford MD; Collins SM
    IEEE Trans Med Imaging; 1997 Feb; 16(1):87-95. PubMed ID: 9050411
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coronary artery quantitation and data management system for paired cineangiograms.
    Leung WH; Sanders W; Alderman EL
    Cathet Cardiovasc Diagn; 1991 Oct; 24(2):121-34. PubMed ID: 1742781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computer-aided interpretation of coronary cineangiograms. Accuracy of automatic detection of stenotic lesions.
    Sugahara T; Yamagihara Y; Sugimoto N; Kimura K; Awano K; Azumi T
    Acta Radiol; 1992 Jan; 33(1):6-9. PubMed ID: 1731845
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulating coronary arteries in x-ray angiograms.
    Morioka CA; Abbey CK; Eckstein M; Close RA; Whiting JS; LeFree M
    Med Phys; 2000 Oct; 27(10):2438-44. PubMed ID: 11099214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of human coronary arterial motion and its potential role in coronary atherogenesis.
    Ding Z; Friedman MH
    J Biomech Eng; 2000 Oct; 122(5):488-92. PubMed ID: 11091949
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accuracy and interobserver variability of coronary cineangiography: a comparison with postmortem evaluation.
    Trask N; Califf RM; Conley MJ; Kong Y; Peter R; Lee KL; Hackel DB; Wagner GS
    J Am Coll Cardiol; 1984 May; 3(5):1145-54. PubMed ID: 6707366
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection and quantitation of coronary artery stenoses from digital subtraction angiograms compared with 35-millimeter film cineangiograms.
    Tobis J; Nalcioglu O; Iseri L; Johnston WD; Roeck W; Castleman E; Bauer B; Montelli S; Henry WL
    Am J Cardiol; 1984 Sep; 54(6):489-96. PubMed ID: 6383001
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computing the skeleton of coronary arteries in cineangiograms.
    Nguyen TV; Sklansky J
    Comput Biomed Res; 1986 Oct; 19(5):428-44. PubMed ID: 3769471
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.