BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 28078344)

  • 1. Kinetic analysis of copper transfer from a chaperone to its target protein mediated by complex formation.
    Kay KL; Zhou L; Tenori L; Bradley JM; Singleton C; Kihlken MA; Ciofi-Baffoni S; Le Brun NE
    Chem Commun (Camb); 2017 Jan; 53(8):1397-1400. PubMed ID: 28078344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanistic insights into Cu(I) cluster transfer between the chaperone CopZ and its cognate Cu(I)-transporting P-type ATPase, CopA.
    Singleton C; Hearnshaw S; Zhou L; Le Brun NE; Hemmings AM
    Biochem J; 2009 Dec; 424(3):347-56. PubMed ID: 19751213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mass spectrometry of B. subtilis CopZ: Cu(i)-binding and interactions with bacillithiol.
    Kay KL; Hamilton CJ; Le Brun NE
    Metallomics; 2016 Jul; 8(7):709-19. PubMed ID: 27197762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tuning of copper-loop flexibility in Bacillus subtilis CopZ copper chaperone: role of conserved residues.
    Rodriguez-Granillo A; Wittung-Stafshede P
    J Phys Chem B; 2009 Feb; 113(7):1919-32. PubMed ID: 19170606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of cofactor on stability of bacterial (CopZ) and human (Atox1) copper chaperones.
    Hussain F; Wittung-Stafshede P
    Biochim Biophys Acta; 2007 Oct; 1774(10):1316-22. PubMed ID: 17881304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High Cu(I) and low proton affinities of the CXXC motif of Bacillus subtilis CopZ.
    Zhou L; Singleton C; Le Brun NE
    Biochem J; 2008 Aug; 413(3):459-65. PubMed ID: 18419582
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mass spectrometric studies of Cu(I)-binding to the N-terminal domains of B. subtilis CopA and influence of bacillithiol.
    Kay KL; Hamilton CJ; Le Brun NE
    J Inorg Biochem; 2019 Jan; 190():24-30. PubMed ID: 30342352
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Copper-mediated dimerization of CopZ, a predicted copper chaperone from Bacillus subtilis.
    Kihlken MA; Leech AP; Le Brun NE
    Biochem J; 2002 Dec; 368(Pt 3):729-39. PubMed ID: 12238948
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and dynamics of Cu(I) binding in copper chaperones Atox1 and CopZ: a computer simulation study.
    Rodriguez-Granillo A; Wittung-Stafshede P
    J Phys Chem B; 2008 Apr; 112(15):4583-93. PubMed ID: 18361527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metalloregulation in Bacillus subtilis: the copZ chromosomal gene is involved in cadmium resistance.
    Solovieva IM; Entian KD
    FEMS Microbiol Lett; 2004 Jul; 236(1):115-22. PubMed ID: 15212800
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distinct characteristics of Ag+ and Cd2+ binding to CopZ from Bacillus subtilis.
    Kihlken MA; Singleton C; Le Brun NE
    J Biol Inorg Chem; 2008 Aug; 13(6):1011-23. PubMed ID: 18496720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solution structure of apo CopZ from Bacillus subtilis: further analysis of the changes associated with the presence of copper.
    Banci L; Bertini I; Del Conte R
    Biochemistry; 2003 Nov; 42(46):13422-8. PubMed ID: 14621987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CopZ from Bacillus subtilis interacts in vivo with a copper exporting CPx-type ATPase CopA.
    Radford DS; Kihlken MA; Borrelly GP; Harwood CR; Le Brun NE; Cavet JS
    FEMS Microbiol Lett; 2003 Mar; 220(1):105-12. PubMed ID: 12644235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Copper trafficking: the solution structure of Bacillus subtilis CopZ.
    Banci L; Bertini I; Del Conte R; Markey J; Ruiz-Dueñas FJ
    Biochemistry; 2001 Dec; 40(51):15660-8. PubMed ID: 11747441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Copper transfer from the Cu(I) chaperone, CopZ, to the repressor, Zn(II)CopY: metal coordination environments and protein interactions.
    Cobine PA; George GN; Jones CE; Wickramasinghe WA; Solioz M; Dameron CT
    Biochemistry; 2002 May; 41(18):5822-9. PubMed ID: 11980486
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CopAb, the second N-terminal soluble domain of Bacillus subtilis CopA, dominates the Cu(I)-binding properties of CopAab.
    Zhou L; Singleton C; Le Brun NE
    Dalton Trans; 2012 May; 41(19):5939-48. PubMed ID: 22531974
    [TBL] [Abstract][Full Text] [Related]  

  • 17. X-ray absorption and NMR spectroscopic studies of CopZ, a copper chaperone in Bacillus subtilis: the coordination properties of the copper ion.
    Banci L; Bertini I; Del Conte R; Mangani S; Meyer-Klaucke W
    Biochemistry; 2003 Mar; 42(8):2467-74. PubMed ID: 12600214
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NMR structure and metal interactions of the CopZ copper chaperone.
    Wimmer R; Herrmann T; Solioz M; Wüthrich K
    J Biol Chem; 1999 Aug; 274(32):22597-603. PubMed ID: 10428839
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atx1-like chaperones and their cognate P-type ATPases: copper-binding and transfer.
    Singleton C; Le Brun NE
    Biometals; 2007 Jun; 20(3-4):275-89. PubMed ID: 17225061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solution structure of the N-terminal domain of a potential copper-translocating P-type ATPase from Bacillus subtilis in the apo and Cu(I) loaded states.
    Banci L; Bertini I; Ciofi-Baffoni S; D'Onofrio M; Gonnelli L; Marhuenda-Egea FC; Ruiz-Dueñas FJ
    J Mol Biol; 2002 Mar; 317(3):415-29. PubMed ID: 11922674
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.