These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 28078797)

  • 61. Iron and carbon metabolism by a mineral-oxidizing Alicyclobacillus-like bacterium.
    Yahya A; Hallberg KB; Johnson DB
    Arch Microbiol; 2008 Apr; 189(4):305-12. PubMed ID: 18004545
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Life without light: microbial diversity and evidence of sulfur- and ammonium-based chemolithotrophy in Movile Cave.
    Chen Y; Wu L; Boden R; Hillebrand A; Kumaresan D; Moussard H; Baciu M; Lu Y; Colin Murrell J
    ISME J; 2009 Sep; 3(9):1093-104. PubMed ID: 19474813
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Diverse sulfur metabolisms from two subterranean sulfidic spring systems.
    Rossmassler K; Hanson TE; Campbell BJ
    FEMS Microbiol Lett; 2016 Aug; 363(16):. PubMed ID: 27324397
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Evolutionary relationships among sulfur- and iron-oxidizing eubacteria.
    Lane DJ; Harrison AP; Stahl D; Pace B; Giovannoni SJ; Olsen GJ; Pace NR
    J Bacteriol; 1992 Jan; 174(1):269-78. PubMed ID: 1729214
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Acidophiles in bioreactor mineral processing.
    Norris PR; Burton NP; Foulis NA
    Extremophiles; 2000 Apr; 4(2):71-6. PubMed ID: 10805560
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Genomic insights into metabolic versatility of a lithotrophic sulfur-oxidizing diazotrophic Alphaproteobacterium Azospirillum thiophilum.
    Orlova MV; Tarlachkov SV; Dubinina GA; Belousova EV; Tutukina MN; Grabovich MY
    FEMS Microbiol Ecol; 2016 Dec; 92(12):. PubMed ID: 27660606
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Sulfur compound oxidation and carbon co-assimilation in the haloalkaliphilic sulfur oxidizers Thioalkalivibrio versutus and Thioalkalimicrobium aerophilum.
    Ang WK; Mahbob M; Dhouib R; Kappler U
    Res Microbiol; 2017 Apr; 168(3):255-265. PubMed ID: 28093321
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Microbial community structures and in situ sulfate-reducing and sulfur-oxidizing activities in biofilms developed on mortar specimens in a corroded sewer system.
    Satoh H; Odagiri M; Ito T; Okabe S
    Water Res; 2009 Oct; 43(18):4729-39. PubMed ID: 19709714
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Ecophysiology of Zetaproteobacteria Associated with Shallow Hydrothermal Iron-Oxyhydroxide Deposits in Nagahama Bay of Satsuma Iwo-Jima, Japan.
    Hoshino T; Kuratomi T; Morono Y; Hori T; Oiwane H; Kiyokawa S; Inagaki F
    Front Microbiol; 2015; 6():1554. PubMed ID: 26793184
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Metatranscriptomic evidence of pervasive and diverse chemolithoautotrophy relevant to C, S, N and Fe cycling in a shallow alluvial aquifer.
    Jewell TN; Karaoz U; Brodie EL; Williams KH; Beller HR
    ISME J; 2016 Sep; 10(9):2106-17. PubMed ID: 26943628
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Pyrite formation from FeS and H
    Thiel J; Byrne JM; Kappler A; Schink B; Pester M
    Proc Natl Acad Sci U S A; 2019 Apr; 116(14):6897-6902. PubMed ID: 30886102
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Assessing Marine Microbial Induced Corrosion at Santa Catalina Island, California.
    Ramírez GA; Hoffman CL; Lee MD; Lesniewski RA; Barco RA; Garber A; Toner BM; Wheat CG; Edwards KJ; Orcutt BN
    Front Microbiol; 2016; 7():1679. PubMed ID: 27826293
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Genome Sequence of
    Neely C; Bou Khalil C; Cervantes A; Diaz R; Escobar A; Ho K; Hoefler S; Smith HH; Abuyen K; Savalia P; Nealson KH; Emerson D; Tully B; Barco RA; Amend J
    Genome Announc; 2018 Feb; 6(5):. PubMed ID: 29437113
    [No Abstract]   [Full Text] [Related]  

  • 74. Ecological Succession of Sulfur-Oxidizing
    Patwardhan S; Foustoukos DI; Giovannelli D; Yücel M; Vetriani C
    Front Microbiol; 2018; 9():2970. PubMed ID: 30574130
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Vanadate Bio-Detoxification Driven by Pyrrhotite with Secondary Mineral Formation.
    He J; Zhang B; Wang Y; Chen S; Dong H
    Environ Sci Technol; 2023 Jan; 57(4):1807-1818. PubMed ID: 36598371
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Draft genome sequence of Methylophaga aminisulfidivorans MP T.
    Han GH; Kim W; Chun J; Kim SW
    J Bacteriol; 2011 Aug; 193(16):4265. PubMed ID: 21685284
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Microbially promoted calcite precipitation in the pelagic redoxcline: Elucidating the formation of the turbid layer.
    Leberecht KM; Ritter SM; Lapp CJ; Klose L; Eschenröder J; Scholz C; Kühnel S; Stinnesbeck W; Kletzin A; Isenbeck-Schröter M; Gescher J
    Geobiology; 2022 Jul; 20(4):498-517. PubMed ID: 35514106
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Microbial community development on model particles in the deep sulfidic waters of the Black Sea.
    Suominen S; Doorenspleet K; Sinninghe Damsté JS; Villanueva L
    Environ Microbiol; 2021 Jun; 23(6):2729-2746. PubMed ID: 32291864
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Structural Iron (II) of Basaltic Glass as an Energy Source for Zetaproteobacteria in an Abyssal Plain Environment, Off the Mid Atlantic Ridge.
    Henri PA; Rommevaux-Jestin C; Lesongeur F; Mumford A; Emerson D; Godfroy A; Ménez B
    Front Microbiol; 2015; 6():1518. PubMed ID: 26834704
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Heterologous expression and biochemical comparison of two homologous SoxX proteins of endosymbiotic Candidatus Vesicomyosocius okutanii and free-living Hydrogenovibrio crunogenus from deep-sea environments.
    Fujii S; Somei K; Asaeda Y; Igawa T; Hattori K; Yoshida T; Sambongi Y
    Protein Expr Purif; 2022 Dec; 200():106157. PubMed ID: 35987324
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.