These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 28079030)

  • 1. Neuromusculoskeletal model self-calibration for on-line sequential bayesian moment estimation.
    Bueno DR; Montano L
    J Neural Eng; 2017 Apr; 14(2):026011. PubMed ID: 28079030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic Elbow Flexion Force Estimation Through a Muscle Twitch Model and sEMG in a Fatigue Condition.
    Na Y; Kim J
    IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1431-1439. PubMed ID: 28113944
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous Estimation of Human Multi-Joint Angles From sEMG Using a State-Space Model.
    Ding Q; Han J; Zhao X
    IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1518-1528. PubMed ID: 28113324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An EMG-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo.
    Lloyd DG; Besier TF
    J Biomech; 2003 Jun; 36(6):765-76. PubMed ID: 12742444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuromusculoskeletal Model Calibration Significantly Affects Predicted Knee Contact Forces for Walking.
    Serrancolí G; Kinney AL; Fregly BJ; Font-Llagunes JM
    J Biomech Eng; 2016 Aug; 138(8):0810011-08100111. PubMed ID: 27210105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface EMG force modeling with joint angle based calibration.
    Hashemi J; Morin E; Mousavi P; Hashtrudi-Zaad K
    J Electromyogr Kinesiol; 2013 Apr; 23(2):416-24. PubMed ID: 23273763
    [TBL] [Abstract][Full Text] [Related]  

  • 7. EMG-Driven Optimal Estimation of Subject-SPECIFIC Hill Model Muscle-Tendon Parameters of the Knee Joint Actuators.
    Falisse A; Van Rossom S; Jonkers I; De Groote F
    IEEE Trans Biomed Eng; 2017 Sep; 64(9):2253-2262. PubMed ID: 27875132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feasibility of using EMG driven neuromusculoskeletal model for prediction of dynamic movement of the elbow.
    Koo TK; Mak AF
    J Electromyogr Kinesiol; 2005 Feb; 15(1):12-26. PubMed ID: 15642650
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Incorporating ultrasound-measured musculotendon parameters to subject-specific EMG-driven model to simulate voluntary elbow flexion for persons after stroke.
    Li L; Tong KY; Hu XL; Hung LK; Koo TK
    Clin Biomech (Bristol); 2009 Jan; 24(1):101-9. PubMed ID: 19012998
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of Load Variation on Joint Angle Estimation From Surface EMG Signals.
    Tang Z; Yu H; Cang S
    IEEE Trans Neural Syst Rehabil Eng; 2016 Dec; 24(12):1342-1350. PubMed ID: 26600163
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hierarchical genetic algorithm versus static optimization-investigation of elbow flexion and extension movements.
    Raikova RT; Aladjov HTs
    J Biomech; 2002 Aug; 35(8):1123-35. PubMed ID: 12126671
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calibration of EMG to force for knee muscles is applicable with submaximal voluntary contractions.
    Doorenbosch CA; Joosten A; Harlaar J
    J Electromyogr Kinesiol; 2005 Aug; 15(4):429-35. PubMed ID: 15811613
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Pilot Study of Individual Muscle Force Prediction during Elbow Flexion and Extension in the Neurorehabilitation Field.
    Hou J; Sun Y; Sun L; Pan B; Huang Z; Wu J; Zhang Z
    Sensors (Basel); 2016 Nov; 16(12):. PubMed ID: 27916853
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inverse estimation of multiple muscle activations from joint moment with muscle synergy extraction.
    Li Z; Guiraud D; Hayashibe M
    IEEE J Biomed Health Inform; 2015 Jan; 19(1):64-73. PubMed ID: 25069130
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hybrid neuromusculoskeletal modeling to best track joint moments using a balance between muscle excitations derived from electromyograms and optimization.
    Sartori M; Farina D; Lloyd DG
    J Biomech; 2014 Nov; 47(15):3613-21. PubMed ID: 25458151
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A study of the external forces and moments at the shoulder and elbow while performing every day tasks.
    Murray IA; Johnson GR
    Clin Biomech (Bristol); 2004 Jul; 19(6):586-94. PubMed ID: 15234482
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An artificial neural network approach and sensitivity analysis in predicting skeletal muscle forces.
    Vilimek M
    Acta Bioeng Biomech; 2014; 16(3):119-27. PubMed ID: 25307446
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effectiveness of EMG-driven neuromusculoskeletal model calibration is task dependent.
    Kian A; Pizzolato C; Halaki M; Ginn K; Lloyd D; Reed D; Ackland D
    J Biomech; 2021 Dec; 129():110698. PubMed ID: 34607281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electromyographic instantaneous amplitude and instantaneous mean power frequency patterns across a range of motion during a concentric isokinetic muscle action of the biceps brachii.
    Beck TW; Housh TJ; Johnson GO; Cramer JT; Weir JP; Coburn JW; Malek MH
    J Electromyogr Kinesiol; 2006 Oct; 16(5):531-9. PubMed ID: 16368246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The detection of long-range correlations of operation force and sEMG with multifractal detrended fluctuation analysis.
    Li F; Li D; Wang C; Chen S; Lv M; Wang M
    Biomed Mater Eng; 2015; 26 Suppl 1():S1157-68. PubMed ID: 26405873
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.