These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 28079140)

  • 41. Methionine sulfoxide reduction and the aging process.
    Koc A; Gladyshev VN
    Ann N Y Acad Sci; 2007 Apr; 1100():383-6. PubMed ID: 17460202
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Protein folding stabilities are a major determinant of oxidation rates for buried methionine residues.
    Walker EJ; Bettinger JQ; Welle KA; Hryhorenko JR; Molina Vargas AM; O'Connell MR; Ghaemmaghami S
    J Biol Chem; 2022 May; 298(5):101872. PubMed ID: 35346688
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Methionine oxidation, alpha-synuclein and Parkinson's disease.
    Glaser CB; Yamin G; Uversky VN; Fink AL
    Biochim Biophys Acta; 2005 Jan; 1703(2):157-69. PubMed ID: 15680224
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Identification of oxidized methionine sites in erythrocyte membrane protein by liquid chromatography/electrospray ionization mass spectrometry peptide mapping.
    Li C; Takazaki S; Jin X; Kang D; Abe Y; Hamasaki N
    Biochemistry; 2006 Oct; 45(39):12117-24. PubMed ID: 17002311
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Oxidative stress-induced proteome alterations target different cellular pathways in human myoblasts.
    Baraibar MA; Hyzewicz J; Rogowska-Wrzesinska A; Ladouce R; Roepstorff P; Mouly V; Friguet B
    Free Radic Biol Med; 2011 Oct; 51(8):1522-32. PubMed ID: 21810466
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Influence of various endogenous and artefact modifications on large-scale proteomics analysis.
    Bienvenut WV; Sumpton D; Lilla S; Martinez A; Meinnel T; Giglione C
    Rapid Commun Mass Spectrom; 2013 Feb; 27(3):443-50. PubMed ID: 23280976
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Structural analysis of apolipoprotein A-I: limited proteolysis of methionine-reduced and -oxidized lipid-free and lipid-bound human apo A-I.
    Roberts LM; Ray MJ; Shih TW; Hayden E; Reader MM; Brouillette CG
    Biochemistry; 1997 Jun; 36(24):7615-24. PubMed ID: 9200714
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Role of individual methionines in the fibrillation of methionine-oxidized alpha-synuclein.
    Hokenson MJ; Uversky VN; Goers J; Yamin G; Munishkina LA; Fink AL
    Biochemistry; 2004 Apr; 43(15):4621-33. PubMed ID: 15078109
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Plant proteins under oxidative attack.
    Jacques S; Ghesquière B; Van Breusegem F; Gevaert K
    Proteomics; 2013 Mar; 13(6):932-40. PubMed ID: 23172756
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Modulating protein activity and cellular function by methionine residue oxidation.
    Cui ZJ; Han ZQ; Li ZY
    Amino Acids; 2012 Aug; 43(2):505-17. PubMed ID: 22146868
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mediating molecular recognition by methionine oxidation: conformational switching by oxidation of methionine in the carboxyl-terminal domain of calmodulin.
    Anbanandam A; Bieber Urbauer RJ; Bartlett RK; Smallwood HS; Squier TC; Urbauer JL
    Biochemistry; 2005 Jul; 44(27):9486-96. PubMed ID: 15996103
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Free-energy simulations of the oxidation of c-terminal methionines in calmodulin.
    Jas GS; Kuczera K
    Proteins; 2002 Aug; 48(2):257-68. PubMed ID: 12112694
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Plant redox proteomics.
    Navrot N; Finnie C; Svensson B; Hägglund P
    J Proteomics; 2011 Aug; 74(8):1450-62. PubMed ID: 21406256
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Chemical modification and site-directed mutagenesis of methionine residues in recombinant human granulocyte colony-stimulating factor: effect on stability and biological activity.
    Lu HS; Fausset PR; Narhi LO; Horan T; Shinagawa K; Shimamoto G; Boone TC
    Arch Biochem Biophys; 1999 Feb; 362(1):1-11. PubMed ID: 9917323
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Oxidized protein degradation and repair in ageing and oxidative stress.
    Friguet B
    FEBS Lett; 2006 May; 580(12):2910-6. PubMed ID: 16574110
    [TBL] [Abstract][Full Text] [Related]  

  • 56. qPhos: a database of protein phosphorylation dynamics in humans.
    Yu K; Zhang Q; Liu Z; Zhao Q; Zhang X; Wang Y; Wang ZX; Jin Y; Li X; Liu ZX; Xu RH
    Nucleic Acids Res; 2019 Jan; 47(D1):D451-D458. PubMed ID: 30380102
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Methionine oxidation within the cerebroside-sulfate activator protein (CSAct or Saposin B).
    Whitelegge JP; Penn B; To T; Johnson J; Waring A; Sherman M; Stevens RL; Fluharty CB; Faull KF; Fluharty AL
    Protein Sci; 2000 Sep; 9(9):1618-30. PubMed ID: 11045609
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Formation of dopamine-mediated alpha-synuclein-soluble oligomers requires methionine oxidation.
    Leong SL; Pham CL; Galatis D; Fodero-Tavoletti MT; Perez K; Hill AF; Masters CL; Ali FE; Barnham KJ; Cappai R
    Free Radic Biol Med; 2009 May; 46(10):1328-37. PubMed ID: 19248830
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Methionine oxidation and aging.
    Stadtman ER; Van Remmen H; Richardson A; Wehr NB; Levine RL
    Biochim Biophys Acta; 2005 Jan; 1703(2):135-40. PubMed ID: 15680221
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Repair of oxidized calmodulin by methionine sulfoxide reductase restores ability to activate the plasma membrane Ca-ATPase.
    Sun H; Gao J; Ferrington DA; Biesiada H; Williams TD; Squier TC
    Biochemistry; 1999 Jan; 38(1):105-12. PubMed ID: 9890888
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.