These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
44. Identification of oxidized methionine sites in erythrocyte membrane protein by liquid chromatography/electrospray ionization mass spectrometry peptide mapping. Li C; Takazaki S; Jin X; Kang D; Abe Y; Hamasaki N Biochemistry; 2006 Oct; 45(39):12117-24. PubMed ID: 17002311 [TBL] [Abstract][Full Text] [Related]
45. Oxidative stress-induced proteome alterations target different cellular pathways in human myoblasts. Baraibar MA; Hyzewicz J; Rogowska-Wrzesinska A; Ladouce R; Roepstorff P; Mouly V; Friguet B Free Radic Biol Med; 2011 Oct; 51(8):1522-32. PubMed ID: 21810466 [TBL] [Abstract][Full Text] [Related]
46. Influence of various endogenous and artefact modifications on large-scale proteomics analysis. Bienvenut WV; Sumpton D; Lilla S; Martinez A; Meinnel T; Giglione C Rapid Commun Mass Spectrom; 2013 Feb; 27(3):443-50. PubMed ID: 23280976 [TBL] [Abstract][Full Text] [Related]
47. Structural analysis of apolipoprotein A-I: limited proteolysis of methionine-reduced and -oxidized lipid-free and lipid-bound human apo A-I. Roberts LM; Ray MJ; Shih TW; Hayden E; Reader MM; Brouillette CG Biochemistry; 1997 Jun; 36(24):7615-24. PubMed ID: 9200714 [TBL] [Abstract][Full Text] [Related]
48. Role of individual methionines in the fibrillation of methionine-oxidized alpha-synuclein. Hokenson MJ; Uversky VN; Goers J; Yamin G; Munishkina LA; Fink AL Biochemistry; 2004 Apr; 43(15):4621-33. PubMed ID: 15078109 [TBL] [Abstract][Full Text] [Related]
49. Plant proteins under oxidative attack. Jacques S; Ghesquière B; Van Breusegem F; Gevaert K Proteomics; 2013 Mar; 13(6):932-40. PubMed ID: 23172756 [TBL] [Abstract][Full Text] [Related]
50. Modulating protein activity and cellular function by methionine residue oxidation. Cui ZJ; Han ZQ; Li ZY Amino Acids; 2012 Aug; 43(2):505-17. PubMed ID: 22146868 [TBL] [Abstract][Full Text] [Related]
51. Mediating molecular recognition by methionine oxidation: conformational switching by oxidation of methionine in the carboxyl-terminal domain of calmodulin. Anbanandam A; Bieber Urbauer RJ; Bartlett RK; Smallwood HS; Squier TC; Urbauer JL Biochemistry; 2005 Jul; 44(27):9486-96. PubMed ID: 15996103 [TBL] [Abstract][Full Text] [Related]
52. Free-energy simulations of the oxidation of c-terminal methionines in calmodulin. Jas GS; Kuczera K Proteins; 2002 Aug; 48(2):257-68. PubMed ID: 12112694 [TBL] [Abstract][Full Text] [Related]
54. Chemical modification and site-directed mutagenesis of methionine residues in recombinant human granulocyte colony-stimulating factor: effect on stability and biological activity. Lu HS; Fausset PR; Narhi LO; Horan T; Shinagawa K; Shimamoto G; Boone TC Arch Biochem Biophys; 1999 Feb; 362(1):1-11. PubMed ID: 9917323 [TBL] [Abstract][Full Text] [Related]
55. Oxidized protein degradation and repair in ageing and oxidative stress. Friguet B FEBS Lett; 2006 May; 580(12):2910-6. PubMed ID: 16574110 [TBL] [Abstract][Full Text] [Related]
56. qPhos: a database of protein phosphorylation dynamics in humans. Yu K; Zhang Q; Liu Z; Zhao Q; Zhang X; Wang Y; Wang ZX; Jin Y; Li X; Liu ZX; Xu RH Nucleic Acids Res; 2019 Jan; 47(D1):D451-D458. PubMed ID: 30380102 [TBL] [Abstract][Full Text] [Related]
57. Methionine oxidation within the cerebroside-sulfate activator protein (CSAct or Saposin B). Whitelegge JP; Penn B; To T; Johnson J; Waring A; Sherman M; Stevens RL; Fluharty CB; Faull KF; Fluharty AL Protein Sci; 2000 Sep; 9(9):1618-30. PubMed ID: 11045609 [TBL] [Abstract][Full Text] [Related]