These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 28079171)

  • 1. Comfortable, high-efficiency heat pump with desiccant-coated, water-sorbing heat exchangers.
    Tu YD; Wang RZ; Ge TS; Zheng X
    Sci Rep; 2017 Jan; 7():40437. PubMed ID: 28079171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An analysis of the heat and mass transfer roles in air dehumidification by solid desiccants.
    Nóbrega CEL; Brum NCL
    Energy Build; 2012 Jul; 50():251-258. PubMed ID: 32288122
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metal-Organic Frameworks as advanced moisture sorbents for energy-efficient high temperature cooling.
    Cui S; Qin M; Marandi A; Steggles V; Wang S; Feng X; Nouar F; Serre C
    Sci Rep; 2018 Oct; 8(1):15284. PubMed ID: 30327543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An overview of solutions for airborne viral transmission reduction related to HVAC systems including liquid desiccant air-scrubbing.
    Giampieri A; Ma Z; Ling-Chin J; Roskilly AP; Smallbone AJ
    Energy (Oxf); 2022 Apr; 244():122709. PubMed ID: 34840405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy performance of independent air dehumidification systems with energy recovery measures.
    Zhang LZ
    Energy (Oxf); 2006 Jul; 31(8):1228-1242. PubMed ID: 32288041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental performance study of a proposed desiccant based air conditioning system.
    Bassuoni MM
    J Adv Res; 2014 Jan; 5(1):87-95. PubMed ID: 25685475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combined Membrane Dehumidification with Heat Exchangers Optimized Using CFD for High Efficiency HVAC Systems.
    Chandrasekaran AS; Fix AJ; Warsinger DM
    Membranes (Basel); 2022 Mar; 12(4):. PubMed ID: 35448318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance predication of a solar assisted desiccant air conditioning system using radial basis function neural network: An integrated machine learning approach.
    Ullah S; Ali M; Sheikh MF; Chaudhary GQ; Kerbache L
    Heliyon; 2024 May; 10(9):e29777. PubMed ID: 38774084
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The potential role of trans-critical CO
    Lo Basso G; de Santoli L; Paiolo R; Losi C
    Renew Energy; 2021 Feb; 164():472-490. PubMed ID: 32982085
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Innovative solid desiccant dehumidification using distributed microwaves.
    Ybyraiymkul D; Chen Q; Burhan M; Akhtar FH; AlRowais R; Shahzad MW; Ja MK; Ng KC
    Sci Rep; 2023 May; 13(1):7386. PubMed ID: 37149711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selecting HVAC Systems to Achieve Comfortable and Cost-effective Residential Net-Zero Energy Buildings.
    Wu W; Skye HM; Domanski PA
    Appl Energy; 2018 Feb; 212():577-591. PubMed ID: 29887669
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance investigation of solar energy-aided compression-based building air conditioning strategies for variable climatic regions.
    Singh G; Das R
    Environ Sci Pollut Res Int; 2024 Mar; 31(12):18672-18682. PubMed ID: 38349494
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Super hygroscopic nanofibrous membrane-based moisture pump for solar-driven indoor dehumidification.
    Zhang Y; Wu L; Wang X; Yu J; Ding B
    Nat Commun; 2020 Jul; 11(1):3302. PubMed ID: 32620818
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermodynamic Analysis of Irreversible Desiccant Systems.
    Giannetti N; Yamaguchi S; Rocchetti A; Saito K
    Entropy (Basel); 2018 Aug; 20(8):. PubMed ID: 33265684
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of the Moisture Adsorption Properties of Starch Particles and Flax Fiber Coatings for Energy Wheel Applications.
    Alabi WO; Karoyo AH; Krishnan EN; Dehabadi L; Wilson LD; Simonson CJ
    ACS Omega; 2020 Apr; 5(16):9529-9539. PubMed ID: 32363305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of a rotary desiccant wheel for enthalpy recovery of air-conditioning in a humid hospitality environment.
    Tsai HY; Wu CT
    Heliyon; 2022 Oct; 8(10):e10796. PubMed ID: 36212005
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy consumption analysis on a dedicated outdoor air system with rotary desiccant wheel.
    Liu W; Lian Z; Radermacher R; Yao Y
    Energy (Oxf); 2007 Sep; 32(9):1749-1760. PubMed ID: 32288042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption air conditioning: a comprehensive review in desiccant materials, system progress, and recent studies on different configurations of hybrid solid desiccant air conditioning systems.
    Abdelgaied M; Saber MA; Bassuoni MM; Khaira AM
    Environ Sci Pollut Res Int; 2023 Mar; 30(11):28344-28372. PubMed ID: 36652080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Annual Performance of a Two-Speed, Dedicated Dehumidification Heat Pump in the NIST Net-Zero Energy Residential Test Facility.
    Payne WV
    ASHRAE Winter Conf Pap; 2016 Jan; 2016(Winter Conference):. PubMed ID: 28729740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Water Vapor Adsorption-Desorption Behavior of Surfactant-Coated Starch Particles for Commercial Energy Wheels.
    Shakouri M; Krishnan EN; Karoyo AH; Dehabadi L; Wilson LD; Simonson CJ
    ACS Omega; 2019 Sep; 4(11):14378-14389. PubMed ID: 31528790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.