These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 28079175)

  • 1. Interstitial atoms enable joint twinning and transformation induced plasticity in strong and ductile high-entropy alloys.
    Li Z; Tasan CC; Springer H; Gault B; Raabe D
    Sci Rep; 2017 Jan; 7():40704. PubMed ID: 28079175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced strength and ductility in a friction stir processing engineered dual phase high entropy alloy.
    Nene SS; Liu K; Frank M; Mishra RS; Brennan RE; Cho KC; Li Z; Raabe D
    Sci Rep; 2017 Nov; 7(1):16167. PubMed ID: 29170444
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off.
    Li Z; Pradeep KG; Deng Y; Raabe D; Tasan CC
    Nature; 2016 Jun; 534(7606):227-30. PubMed ID: 27279217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design metastability in high-entropy alloys by tailoring unstable fault energies.
    Wang X; De Vecchis RR; Li C; Zhang H; Hu X; Sridar S; Wang Y; Chen W; Xiong W
    Sci Adv; 2022 Sep; 8(36):eabo7333. PubMed ID: 36083911
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature-Dependent Superplasticity and Strengthening in CoNiCrFeMn High Entropy Alloy Nanowires Using Atomistic Simulations.
    Tripathi PK; Chiu YC; Bhowmick S; Lo YC
    Nanomaterials (Basel); 2021 Aug; 11(8):. PubMed ID: 34443940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes.
    Lei Z; Liu X; Wu Y; Wang H; Jiang S; Wang S; Hui X; Wu Y; Gault B; Kontis P; Raabe D; Gu L; Zhang Q; Chen H; Wang H; Liu J; An K; Zeng Q; Nieh TG; Lu Z
    Nature; 2018 Nov; 563(7732):546-550. PubMed ID: 30429610
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strong and Ductile Non-equiatomic High-Entropy Alloys: Design, Processing, Microstructure, and Mechanical Properties.
    Li Z; Raabe D
    JOM (1989); 2017; 69(11):2099-2106. PubMed ID: 31983864
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microstructure Refinement of a Transformation-Induced Plasticity High-Entropy Alloy.
    Yi H; Wei D; Xie R; Zhang Y; Kato H
    Materials (Basel); 2021 Mar; 14(5):. PubMed ID: 33806373
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Twinning-induced plasticity (TWIP) and work hardening in Ti-based metallic glass matrix composites.
    Fan J; Qiao JW; Wang ZH; Rao W; Kang GZ
    Sci Rep; 2017 May; 7(1):1877. PubMed ID: 28500321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonbasal Slip Systems Enable a Strong and Ductile Hexagonal-Close-Packed High-Entropy Phase.
    Bu Y; Li Z; Liu J; Wang H; Raabe D; Yang W
    Phys Rev Lett; 2019 Feb; 122(7):075502. PubMed ID: 30848647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tuning Microstructure and Mechanical Performance of a Co-Rich Transformation-Induced Plasticity High Entropy Alloy.
    Yi H; Xie R; Zhang Y; Wang L; Tan M; Li T; Wei D
    Materials (Basel); 2022 Jun; 15(13):. PubMed ID: 35806733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-introduction of precipitate hardening and TRIP in a TWIP high-entropy alloy using friction stir alloying.
    Wang T; Shukla S; Gwalani B; Sinha S; Thapliyal S; Frank M; Mishra RS
    Sci Rep; 2021 Jan; 11(1):1579. PubMed ID: 33452417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tailoring phase transformation strengthening and plasticity of nanostructured high entropy alloys.
    Zhao YF; Feng XB; Zhang JY; Lu Y; Wu SH; Wang YQ; Wu K; Liu G; Sun J
    Nanoscale; 2020 Jul; 12(26):14135-14149. PubMed ID: 32597912
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A dual-phase alloy with ultrahigh strength-ductility synergy over a wide temperature range.
    Nutor RK; Cao Q; Wei R; Su Q; Du G; Wang X; Li F; Zhang D; Jiang JZ
    Sci Adv; 2021 Aug; 7(34):. PubMed ID: 34417183
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental and numerical study of mechanical properties of multi-phase medium-Mn TWIP-TRIP steel: influences of strain rate and phase constituents.
    Benzing JT; Liu Y; Zhang X; Luecke WE; Ponge D; Dutta A; Oskay C; Raabe D; Wittig JE
    Acta Mater; 2019; 177():. PubMed ID: 33304199
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bidirectional Transformation Enables Hierarchical Nanolaminate Dual-Phase High-Entropy Alloys.
    Lu W; Liebscher CH; Dehm G; Raabe D; Li Z
    Adv Mater; 2018 Nov; 30(44):e1804727. PubMed ID: 30589472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extremely high strength and work hardening ability in a metastable high entropy alloy.
    Nene SS; Frank M; Liu K; Mishra RS; McWilliams BA; Cho KC
    Sci Rep; 2018 Jul; 8(1):9920. PubMed ID: 29967441
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasticity Improvement in a Co-Rich Co
    Li Y; Chen Y; Nutor RK; Wang N; Cao Q; Wang X; Zhang D; Jiang JZ
    Materials (Basel); 2023 Jan; 16(3):. PubMed ID: 36770158
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microscopic mechanisms contributing to the synchronous improvement of strength and plasticity (SISP) for TWIP copper alloys.
    Liu R; Zhang ZJ; Li LL; An XH; Zhang ZF
    Sci Rep; 2015 Apr; 5():9550. PubMed ID: 25828192
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-content ductile coherent nanoprecipitates achieve ultrastrong high-entropy alloys.
    Liang YJ; Wang L; Wen Y; Cheng B; Wu Q; Cao T; Xiao Q; Xue Y; Sha G; Wang Y; Ren Y; Li X; Wang L; Wang F; Cai H
    Nat Commun; 2018 Oct; 9(1):4063. PubMed ID: 30282971
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.