These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 28079483)

  • 1. Airborne Lidar Measurements of a Smoke Plume Produced by a Controlled Burn of Crude Oil on the Ocean.
    Ross JL; Waggoner AP; Hobbs PV; Ferek RJ
    J Air Waste Manag Assoc; 1996 Apr; 46(4):327-334. PubMed ID: 28079483
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Airborne lidar measurements of smoke plume distribution, vertical transmission, and particle size.
    Uthe EE; Morley BM; Nielsen NB
    Appl Opt; 1982 Feb; 21(3):460-3. PubMed ID: 20372478
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Offshore field experiments with in-situ burning of oil: Emissions and burn efficiency.
    Faksness LG; Leirvik F; Taban IC; Engen F; Jensen HV; Holbu JW; Dolva H; Bråtveit M
    Environ Res; 2022 Apr; 205():112419. PubMed ID: 34822858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Airborne polarized lidar detection of scattering layers in the ocean.
    Vasilkov AP; Goldin YA; Gureev BA; Hoge FE; Swift RN; Wright CW
    Appl Opt; 2001 Aug; 40(24):4353-64. PubMed ID: 18360476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Particle and Gas Emissions from an In Situ Burn of Crude Oil on the Ocean.
    Hobbs JL
    J Air Waste Manag Assoc; 1996 Mar; 46(3):251-259. PubMed ID: 28065133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing Vertical Allocation of Wildfire Smoke Emissions Using Observational Constraints From Airborne Lidar in the Western U.S.
    Ye X; Saide PE; Hair J; Fenn M; Shingler T; Soja A; Gargulinski E; Wiggins E
    J Geophys Res Atmos; 2022 Nov; 127(21):e2022JD036808. PubMed ID: 37035763
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of smoke plume and layer heights using scanning lidar data.
    Kovalev VA; Petkov A; Wold C; Urbanski S; Min Hao W
    Appl Opt; 2009 Oct; 48(28):5287-94. PubMed ID: 19798367
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Remote measurement of smoke plume transmittance using lidar.
    Cook CS; Bethke GW; Conner WD
    Appl Opt; 1972 Aug; 11(8):1742-8. PubMed ID: 20119229
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shipborne variable-FOV, dual-wavelength, polarized ocean lidar: design and measurements in the Western Pacific.
    Liu Q; Wu S; Liu B; Liu J; Zhang K; Dai G; Tang J; Chen G
    Opt Express; 2022 Mar; 30(6):8927-8948. PubMed ID: 35299334
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vertical profiles of microphysical particle properties derived from inversion with two-dimensional regularization of multiwavelength Raman lidar data: experiment.
    Müller D; Kolgotin A; Mattis I; Petzold A; Stohl A
    Appl Opt; 2011 May; 50(14):2069-79. PubMed ID: 21556108
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of the smoke-plume heights and their dynamics with ground-based scanning lidar.
    Kovalev V; Petkov A; Wold C; Urbanski S; Hao WM
    Appl Opt; 2015 Mar; 54(8):2011-7. PubMed ID: 25968377
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fallout plume of submerged oil from Deepwater Horizon.
    Valentine DL; Fisher GB; Bagby SC; Nelson RK; Reddy CM; Sylva SP; Woo MA
    Proc Natl Acad Sci U S A; 2014 Nov; 111(45):15906-11. PubMed ID: 25349409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Retrieval of water cloud properties from carbon dioxide lidar soundings.
    Piatt CM; Takashima T
    Appl Opt; 1987 Apr; 26(7):1257-63. PubMed ID: 20454313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement of Mount Etna plume by CO2-laser-based lidar.
    Fiorani L; Colao F; Palucci A
    Opt Lett; 2009 Mar; 34(6):800-2. PubMed ID: 19282937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Airborne lidar detection of subsurface oceanic scattering layers.
    Hoge FE; Wright CW; Krabill WB; Buntzen RR; Gilbert GD; Swift RN; Yungel JK; Berry RE
    Appl Opt; 1988 Oct; 27(19):3969-77. PubMed ID: 20539503
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Linear depolarization of lidar returns by aged smoke particles.
    Mishchenko MI; Dlugach JM; Liu L
    Appl Opt; 2016 Dec; 55(35):9968-9973. PubMed ID: 27958398
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CALIPSO lidar ratio retrieval over the ocean.
    Josset D; Rogers R; Pelon J; Hu Y; Liu Z; Omar A; Zhai PW
    Opt Express; 2011 Sep; 19(19):18696-706. PubMed ID: 21935239
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Swelling of Transported Smoke from Savanna fires over the Southeast Atlantic Ocean.
    Kar J; Vaughan M; Tackett J; Liu Z; Omar A; Rodier S; Trepte C; Lucker P
    Remote Sens Environ; 2018 Jun; 211():105-111. PubMed ID: 33510546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lidar characterization of crystalline silica generation and transport from a sand and gravel plant.
    Trzepla-Nabaglo K; Shiraki R; Holmén BA
    J Hazard Mater; 2006 Apr; 132(1):14-25. PubMed ID: 16442218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Eye-safe tracking of oil fog plumes by UV lidar.
    Eberhard WL
    Appl Opt; 1983 Aug; 22(15):2282-5. PubMed ID: 18196125
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.