BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 28079941)

  • 1. Changes to Cretaceous surface fire behaviour influenced the spread of the early angiosperms.
    Belcher CM; Hudspith VA
    New Phytol; 2017 Feb; 213(3):1521-1532. PubMed ID: 28079941
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fire and the spread of flowering plants in the Cretaceous.
    Bond WJ; Scott AC
    New Phytol; 2010 Dec; 188(4):1137-50. PubMed ID: 20819174
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The rise of angiosperms strengthened fire feedbacks and improved the regulation of atmospheric oxygen.
    Belcher CM; Mills BJW; Vitali R; Baker SJ; Lenton TM; Watson AJ
    Nat Commun; 2021 Jan; 12(1):503. PubMed ID: 33479227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Fire behavior of Quercus mongolica leaf litter fuelbed under zero-slope and no-wind conditions. II. Analysis and modelling of fireline intensity, fuel consumption, and combustion efficiency].
    Zhang JL; Liu BF; Di XY; Chu TF; Jin S
    Ying Yong Sheng Tai Xue Bao; 2013 Dec; 24(12):3381-90. PubMed ID: 24697055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fire-adapted traits of Pinus arose in the fiery Cretaceous.
    He T; Pausas JG; Belcher CM; Schwilk DW; Lamont BB
    New Phytol; 2012 May; 194(3):751-759. PubMed ID: 22348443
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Fire behavior of ground surface fuels in Pinus koraiensis and Quercus mongolica mixed forest under no wind and zero slope condition: a prediction with extended Rothermel model].
    Zhang JL; Liu BF; Chu TF; Di XY; Jin S
    Ying Yong Sheng Tai Xue Bao; 2012 Jun; 23(6):1495-502. PubMed ID: 22937636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fossil evidence for Cretaceous escalation in angiosperm leaf vein evolution.
    Feild TS; Brodribb TJ; Iglesias A; Chatelet DS; Baresch A; Upchurch GR; Gomez B; Mohr BA; Coiffard C; Kvacek J; Jaramillo C
    Proc Natl Acad Sci U S A; 2011 May; 108(20):8363-6. PubMed ID: 21536892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of leaf morphology on litter flammability and its utility for interpreting palaeofire.
    Belcher CM
    Philos Trans R Soc Lond B Biol Sci; 2016 Jun; 371(1696):. PubMed ID: 27216520
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flammability properties of British heathland and moorland vegetation: models for predicting fire ignition.
    Santana VM; Marrs RH
    J Environ Manage; 2014 Jun; 139():88-96. PubMed ID: 24681648
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fire intensity effects on post-fire fuel recovery in Eucalyptus open forests of south-eastern Australia.
    Volkova L; Weiss Aparicio AG; Weston CJ
    Sci Total Environ; 2019 Jun; 670():328-336. PubMed ID: 30904646
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring how fire spread mode shapes the composition of pyrogenic carbon from burning forest litter fuels in a combustion wind tunnel.
    Surawski NC; Macdonald LM; Baldock JA; Sullivan AL; Roxburgh SH; Polglase PJ
    Sci Total Environ; 2020 Jan; 698():134306. PubMed ID: 31783449
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developing customized fuel models for shrub and bracken communities in Galicia (NW Spain).
    Vega JA; Álvarez-González JG; Arellano-Pérez S; Fernández C; Cuiñas P; Jiménez E; Fernández-Alonso JM; Fontúrbel T; Alonso-Rego C; Ruiz-González AD
    J Environ Manage; 2024 Feb; 351():119831. PubMed ID: 38134501
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Litter Species Composition and Topographic Effects on Fuels and Modeled Fire Behavior in an Oak-Hickory Forest in the Eastern USA.
    Dickinson MB; Hutchinson TF; Dietenberger M; Matt F; Peters MP
    PLoS One; 2016; 11(8):e0159997. PubMed ID: 27536964
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Landscape variation in tree regeneration and snag fall drive fuel loads in 24-year old post-fire lodgepole pine forests.
    Nelson KN; Turner MG; Romme WH; Tinker DB
    Ecol Appl; 2016 Dec; 26(8):2422-2436. PubMed ID: 27875007
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of experimental fuel additions on fire intensity and severity: unexpected carbon resilience of a neotropical forest.
    Brando PM; Oliveria-Santos C; Rocha W; Cury R; Coe MT
    Glob Chang Biol; 2016 Jul; 22(7):2516-25. PubMed ID: 26750627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Form, function and environments of the early angiosperms: merging extant phylogeny and ecophysiology with fossils.
    Feild TS; Arens NC
    New Phytol; 2005 May; 166(2):383-408. PubMed ID: 15819904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A critical transition in leaf evolution facilitated the Cretaceous angiosperm revolution.
    de Boer HJ; Eppinga MB; Wassen MJ; Dekker SC
    Nat Commun; 2012; 3():1221. PubMed ID: 23187621
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ferns diversified in the shadow of angiosperms.
    Schneider H; Schuettpelz E; Pryer KM; Cranfill R; Magallón S; Lupia R
    Nature; 2004 Apr; 428(6982):553-7. PubMed ID: 15058303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fossil evidence of core monocots in the Early Cretaceous.
    Coiffard C; Kardjilov N; Manke I; Bernardes-de-Oliveira MEC
    Nat Plants; 2019 Jul; 5(7):691-696. PubMed ID: 31285562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diversity in obscurity: fossil flowers and the early history of angiosperms.
    Friis EM; Pedersen KR; Crane PR
    Philos Trans R Soc Lond B Biol Sci; 2010 Feb; 365(1539):369-82. PubMed ID: 20047865
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.