These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Lipid exchange among electroneutral Sulfo-DIBMA nanodiscs is independent of ion concentration. Eggenreich L; Vargas C; Kolar C; Keller S Biol Chem; 2023 Jun; 404(7):703-713. PubMed ID: 36921292 [TBL] [Abstract][Full Text] [Related]
23. Role of Coulombic Repulsion in Collisional Lipid Transfer Among SMA(2:1)-Bounded Nanodiscs. Grethen A; Glueck D; Keller S J Membr Biol; 2018 Jun; 251(3):443-451. PubMed ID: 29508005 [TBL] [Abstract][Full Text] [Related]
24. Influence of different polymer belts on lipid properties in nanodiscs characterized by CW EPR spectroscopy. Hoffmann M; Eisermann J; Schöffmann FA; Das M; Vargas C; Keller S; Hinderberger D Biochim Biophys Acta Biomembr; 2021 Oct; 1863(10):183681. PubMed ID: 34186033 [TBL] [Abstract][Full Text] [Related]
25. Styrene maleic-acid lipid particles (SMALPs) into detergent or amphipols: An exchange protocol for membrane protein characterisation. Hesketh SJ; Klebl DP; Higgins AJ; Thomsen M; Pickles IB; Sobott F; Sivaprasadarao A; Postis VLG; Muench SP Biochim Biophys Acta Biomembr; 2020 May; 1862(5):183192. PubMed ID: 31945320 [TBL] [Abstract][Full Text] [Related]
26. Membrane protein extraction and purification using styrene-maleic acid (SMA) copolymer: effect of variations in polymer structure. Morrison KA; Akram A; Mathews A; Khan ZA; Patel JH; Zhou C; Hardy DJ; Moore-Kelly C; Patel R; Odiba V; Knowles TJ; Javed MU; Chmel NP; Dafforn TR; Rothnie AJ Biochem J; 2016 Dec; 473(23):4349-4360. PubMed ID: 27694389 [TBL] [Abstract][Full Text] [Related]
27. The use of styrene-maleic acid copolymer (SMA) for studies on T cell membrane rafts. Angelisová P; Ballek O; Sýkora J; Benada O; Čajka T; Pokorná J; Pinkas D; Hořejší V Biochim Biophys Acta Biomembr; 2019 Jan; 1861(1):130-141. PubMed ID: 30463696 [TBL] [Abstract][Full Text] [Related]
28. Influence of Poly(styrene- co-maleic acid) Copolymer Structure on the Properties and Self-Assembly of SMALP Nanodiscs. Hall SCL; Tognoloni C; Price GJ; Klumperman B; Edler KJ; Dafforn TR; Arnold T Biomacromolecules; 2018 Mar; 19(3):761-772. PubMed ID: 29272585 [TBL] [Abstract][Full Text] [Related]
29. SMALPs Are Not Simply Nanodiscs: The Polymer-to-Lipid Ratios of Fractionated SMALPs Underline Their Heterogeneous Nature. Kamilar E; Bariwal J; Zheng W; Ma H; Liang H Biomacromolecules; 2023 Apr; 24(4):1819-1838. PubMed ID: 36947865 [TBL] [Abstract][Full Text] [Related]
30. Solubilization of lipids and lipid phases by the styrene-maleic acid copolymer. Dominguez Pardo JJ; Dörr JM; Iyer A; Cox RC; Scheidelaar S; Koorengevel MC; Subramaniam V; Killian JA Eur Biophys J; 2017 Jan; 46(1):91-101. PubMed ID: 27815573 [TBL] [Abstract][Full Text] [Related]
31. SMA-SH: Modified Styrene-Maleic Acid Copolymer for Functionalization of Lipid Nanodiscs. Lindhoud S; Carvalho V; Pronk JW; Aubin-Tam ME Biomacromolecules; 2016 Apr; 17(4):1516-22. PubMed ID: 26974006 [TBL] [Abstract][Full Text] [Related]
32. The effect of hydrophobic alkyl sidechains on size and solution behaviors of nanodiscs formed by alternating styrene maleamic copolymer. Esmaili M; Acevedo-Morantes C; Wille H; Overduin M Biochim Biophys Acta Biomembr; 2020 Oct; 1862(10):183360. PubMed ID: 32454010 [TBL] [Abstract][Full Text] [Related]
33. The interaction of styrene maleic acid copolymers with phospholipids in Langmuir monolayers, vesicles and nanodiscs; a structural study. Hall SCL; Tognoloni C; Campbell RA; Richens J; O'Shea P; Terry AE; Price GJ; Dafforn TR; Edler KJ; Arnold T J Colloid Interface Sci; 2022 Nov; 625():220-236. PubMed ID: 35716617 [TBL] [Abstract][Full Text] [Related]
34. Bacterial reaction centers purified with styrene maleic acid copolymer retain native membrane functional properties and display enhanced stability. Swainsbury DJ; Scheidelaar S; van Grondelle R; Killian JA; Jones MR Angew Chem Int Ed Engl; 2014 Oct; 53(44):11803-7. PubMed ID: 25212490 [TBL] [Abstract][Full Text] [Related]
35. Nanoscale Model System for the Human Myelin Sheath. Hoffmann M; Haselberger D; Hofmann T; Müller L; Janson K; Meister A; Das M; Vargas C; Keller S; Kastritis PL; Schmidt C; Hinderberger D Biomacromolecules; 2021 Sep; 22(9):3901-3912. PubMed ID: 34324309 [TBL] [Abstract][Full Text] [Related]
37. Crystallogenesis of Membrane Proteins Mediated by Polymer-Bounded Lipid Nanodiscs. Broecker J; Eger BT; Ernst OP Structure; 2017 Feb; 25(2):384-392. PubMed ID: 28089451 [TBL] [Abstract][Full Text] [Related]
38. Alternatives to Styrene- and Diisobutylene-Based Copolymers for Membrane Protein Solubilization via Nanodisc Formation. Workman CE; Bag P; Cawthon B; Ali FH; Brady NG; Bruce BD; Long BK Angew Chem Int Ed Engl; 2023 Oct; 62(43):e202306572. PubMed ID: 37682083 [TBL] [Abstract][Full Text] [Related]
39. Stable and Functional Rhomboid Proteases in Lipid Nanodiscs by Using Diisobutylene/Maleic Acid Copolymers. Barniol-Xicota M; Verhelst SHL J Am Chem Soc; 2018 Nov; 140(44):14557-14561. PubMed ID: 30347979 [TBL] [Abstract][Full Text] [Related]
40. Lipid Dynamics in Diisobutylene-Maleic Acid (DIBMA) Lipid Particles in Presence of Sensory Rhodopsin II. Voskoboynikova N; Orekhov P; Bozdaganyan M; Kodde F; Rademacher M; Schowe M; Budke-Gieseking A; Brickwedde B; Psathaki OE; Mulkidjanian AY; Cosentino K; Shaitan KV; Steinhoff HJ Int J Mol Sci; 2021 Mar; 22(5):. PubMed ID: 33806280 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]