These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 28080025)
1. Enabling Energy Efficiency and Polarity Control in Germanium Nanowire Transistors by Individually Gated Nanojunctions. Trommer J; Heinzig A; Mühle U; Löffler M; Winzer A; Jordan PM; Beister J; Baldauf T; Geidel M; Adolphi B; Zschech E; Mikolajick T; Weber WM ACS Nano; 2017 Feb; 11(2):1704-1711. PubMed ID: 28080025 [TBL] [Abstract][Full Text] [Related]
2. A Triode Device with a Gate Controllable Schottky Barrier: Germanium Nanowire Transistors and Their Applications. Lin CY; Chen CF; Chang YM; Yang SH; Lee KC; Wu WW; Jian WB; Lin YF Small; 2019 Aug; 15(33):e1900865. PubMed ID: 31264786 [TBL] [Abstract][Full Text] [Related]
3. Doping-Free Complementary Logic Gates Enabled by Two-Dimensional Polarity-Controllable Transistors. Resta GV; Balaji Y; Lin D; Radu IP; Catthoor F; Gaillardon PE; De Micheli G ACS Nano; 2018 Jul; 12(7):7039-7047. PubMed ID: 29956911 [TBL] [Abstract][Full Text] [Related]
4. Channel Length-Dependent Operation of Ambipolar Schottky-Barrier Transistors on a Single Si Nanowire. Park SJ; Jeon DY; Sessi V; Trommer J; Heinzig A; Mikolajick T; Kim GT; Weber WM ACS Appl Mater Interfaces; 2020 Sep; 12(39):43927-43932. PubMed ID: 32880433 [TBL] [Abstract][Full Text] [Related]
5. Direct probing of Schottky barriers in Si nanowire Schottky barrier field effect transistors. Martin D; Heinzig A; Grube M; Geelhaar L; Mikolajick T; Riechert H; Weber WM Phys Rev Lett; 2011 Nov; 107(21):216807. PubMed ID: 22181912 [TBL] [Abstract][Full Text] [Related]
10. Oxide-confined formation of germanium nanowire heterostructures for high-performance transistors. Tang J; Wang CY; Xiu F; Lang M; Chu LW; Tsai CJ; Chueh YL; Chen LJ; Wang KL ACS Nano; 2011 Jul; 5(7):6008-15. PubMed ID: 21699197 [TBL] [Abstract][Full Text] [Related]
11. Polarity control in a single transition metal dichalcogenide (TMD) transistor for homogeneous complementary logic circuits. Shim J; Jang SW; Lim JH; Kim H; Kang DH; Kim KH; Seo S; Heo K; Shin C; Yu HY; Lee S; Ko DH; Park JH Nanoscale; 2019 Jul; 11(27):12871-12877. PubMed ID: 31243409 [TBL] [Abstract][Full Text] [Related]
12. Two-dimensional material-based complementary ambipolar field-effect transistors with ohmic-like contacts. Park J; Son J; Park SK; Lee DS; Jeon DY Nanotechnology; 2023 May; 34(32):. PubMed ID: 37146599 [TBL] [Abstract][Full Text] [Related]
16. Effect of diameter variation on electrical characteristics of Schottky barrier indium arsenide nanowire field-effect transistors. Razavieh A; Mohseni PK; Jung K; Mehrotra S; Das S; Suslov S; Li X; Klimeck G; Janes DB; Appenzeller J ACS Nano; 2014 Jun; 8(6):6281-7. PubMed ID: 24848303 [TBL] [Abstract][Full Text] [Related]
17. Dependences of the electrical properties on the diameter and the doping concentration of the Si nanowire field effect transistors with a Schottky metal-semiconductor contact. You JH; Lee SH; You CH; Yu YS; Kim TW J Nanosci Nanotechnol; 2010 May; 10(5):3609-13. PubMed ID: 20359010 [TBL] [Abstract][Full Text] [Related]
19. Tunable Polarity Behavior and High-Performance Photosensitive Characteristics in Schottky-Barrier Field-Effect Transistors Based on Multilayer WS Yang Y; Huang L; Xiao Y; Li Y; Zhao Y; Luo D; Tao L; Zhang M; Feng T; Zheng Z; Feng X; Mu Z; Li J ACS Appl Mater Interfaces; 2018 Jan; 10(3):2745-2751. PubMed ID: 29271630 [TBL] [Abstract][Full Text] [Related]
20. Metal/nanowire contacts, quantum confinement, and their roles in the generation of new, gigantic actions in nanowire transistors. Mohammad SN Nanotechnology; 2013 Nov; 24(45):455201. PubMed ID: 24129340 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]