These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. A Dynamically Reconfigurable Ambipolar Black Phosphorus Memory Device. Tian H; Deng B; Chin ML; Yan X; Jiang H; Han SJ; Sun V; Xia Q; Dubey M; Xia F; Wang H ACS Nano; 2016 Nov; 10(11):10428-10435. PubMed ID: 27794601 [TBL] [Abstract][Full Text] [Related]
23. Multiple Schottky Barrier-Limited Field-Effect Transistors on a Single Silicon Nanowire with an Intrinsic Doping Gradient. Barreda JL; Keiper TD; Zhang M; Xiong P ACS Appl Mater Interfaces; 2017 Apr; 9(13):12046-12053. PubMed ID: 28274114 [TBL] [Abstract][Full Text] [Related]
24. Reconfiguration of operation modes in silicon nanowire field-effect transistors by electrostatic virtual doping. Kim T; Lim D; Son J; Cho K; Kim S Nanotechnology; 2022 Jul; 33(41):. PubMed ID: 35777260 [TBL] [Abstract][Full Text] [Related]
26. Percolation-Limited Dual Charge Transport in Vertical p Lim DU; Kim S; Choi YJ; Jo SB; Cho JH Nano Lett; 2020 May; 20(5):3585-3592. PubMed ID: 32343583 [TBL] [Abstract][Full Text] [Related]
27. Reconfigurable Complementary Logic Circuits with Ambipolar Organic Transistors. Yoo H; Ghittorelli M; Smits EC; Gelinck GH; Lee HK; Torricelli F; Kim JJ Sci Rep; 2016 Oct; 6():35585. PubMed ID: 27762321 [TBL] [Abstract][Full Text] [Related]
28. Silicon and germanium nanowire electronics: physics of conventional and unconventional transistors. Weber WM; Mikolajick T Rep Prog Phys; 2017 Jun; 80(6):066502. PubMed ID: 28054936 [TBL] [Abstract][Full Text] [Related]
29. Nanowire systems: technology and design. Gaillardon PE; Amarù LG; Bobba S; De Marchi M; Sacchetto D; De Micheli G Philos Trans A Math Phys Eng Sci; 2014 Mar; 372(2012):20130102. PubMed ID: 24567471 [TBL] [Abstract][Full Text] [Related]
30. Ge/Si nanowire heterostructures as high-performance field-effect transistors. Xiang J; Lu W; Hu Y; Wu Y; Yan H; Lieber CM Nature; 2006 May; 441(7092):489-93. PubMed ID: 16724062 [TBL] [Abstract][Full Text] [Related]
31. Remote doping and Schottky barrier formation in strongly quantum confined single PbSe nanowire field-effect transistors. Oh SJ; Kim DK; Kagan CR ACS Nano; 2012 May; 6(5):4328-34. PubMed ID: 22512336 [TBL] [Abstract][Full Text] [Related]
32. Ultralow-power complementary metal-oxide-semiconductor inverters constructed on Schottky barrier modified nanowire metal-oxide-semiconductor field-effect-transistors. Ma RM; Peng RM; Wen XN; Dai L; Liu C; Sun T; Xu WJ; Qin GG J Nanosci Nanotechnol; 2010 Oct; 10(10):6428-31. PubMed ID: 21137742 [TBL] [Abstract][Full Text] [Related]
33. Heterogeneous integration of epitaxial Ge on Si using AlAs/GaAs buffer architecture: suitability for low-power fin field-effect transistors. Hudait MK; Clavel M; Goley P; Jain N; Zhu Y Sci Rep; 2014 Nov; 4():6964. PubMed ID: 25376723 [TBL] [Abstract][Full Text] [Related]
34. Device perspective for black phosphorus field-effect transistors: contact resistance, ambipolar behavior, and scaling. Du Y; Liu H; Deng Y; Ye PD ACS Nano; 2014 Oct; 8(10):10035-42. PubMed ID: 25314022 [TBL] [Abstract][Full Text] [Related]
35. Carrier Polarity Control in α-MoTe2 Schottky Junctions Based on Weak Fermi-Level Pinning. Nakaharai S; Yamamoto M; Ueno K; Tsukagoshi K ACS Appl Mater Interfaces; 2016 Jun; 8(23):14732-9. PubMed ID: 27203118 [TBL] [Abstract][Full Text] [Related]
36. High-Performance Wrap-Gated InGaAs Nanowire Field-Effect Transistors with Sputtered Dielectrics. Shen LF; Yip S; Yang ZX; Fang M; Hung T; Pun EY; Ho JC Sci Rep; 2015 Nov; 5():16871. PubMed ID: 26607169 [TBL] [Abstract][Full Text] [Related]
37. Influence of Injection Barrier on Vertical Organic Field Effect Transistors. Dahal D; Paudel PR; Kaphle V; Radha Krishnan RK; Lüssem B ACS Appl Mater Interfaces; 2022 Feb; 14(5):7063-7072. PubMed ID: 35077151 [TBL] [Abstract][Full Text] [Related]