These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 28080037)

  • 1. Global Metabolic Engineering of Glycolytic Pathway via Multicopy Integration in Saccharomyces cerevisiae.
    Yamada R; Wakita K; Ogino H
    ACS Synth Biol; 2017 Apr; 6(4):659-666. PubMed ID: 28080037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced d-lactic acid production by recombinant Saccharomyces cerevisiae following optimization of the global metabolic pathway.
    Yamada R; Wakita K; Mitsui R; Ogino H
    Biotechnol Bioeng; 2017 Sep; 114(9):2075-2084. PubMed ID: 28475210
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced production of 2,3-butanediol in pyruvate decarboxylase-deficient Saccharomyces cerevisiae through optimizing ratio of glucose/galactose.
    Choi EJ; Kim JW; Kim SJ; Seo SO; Lane S; Park YC; Jin YS; Seo JH
    Biotechnol J; 2016 Nov; 11(11):1424-1432. PubMed ID: 27528190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overexpressing enzymes of the Ehrlich pathway and deleting genes of the competing pathway in Saccharomyces cerevisiae for increasing 2-phenylethanol production from glucose.
    Shen L; Nishimura Y; Matsuda F; Ishii J; Kondo A
    J Biosci Bioeng; 2016 Jul; 122(1):34-9. PubMed ID: 26975754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Overproduction of glycolytic enzymes in yeast.
    Schaaff I; Heinisch J; Zimmermann FK
    Yeast; 1989; 5(4):285-90. PubMed ID: 2528863
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improvement of ethanol yield from glycerol via conversion of pyruvate to ethanol in metabolically engineered Saccharomyces cerevisiae.
    Yu KO; Jung J; Ramzi AB; Kim SW; Park C; Han SO
    Appl Biochem Biotechnol; 2012 Feb; 166(4):856-65. PubMed ID: 22161213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic engineering to enhance the Ehrlich pathway and alter carbon flux for increased isobutanol production from glucose by Saccharomyces cerevisiae.
    Kondo T; Tezuka H; Ishii J; Matsuda F; Ogino C; Kondo A
    J Biotechnol; 2012 May; 159(1-2):32-7. PubMed ID: 22342368
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression of Saccharomyces cerevisiae cDNAs to enhance the growth of non-ethanol-producing S. cerevisiae strains lacking pyruvate decarboxylases.
    Narazaki Y; Nomura Y; Morita K; Shimizu H; Matsuda F
    J Biosci Bioeng; 2018 Sep; 126(3):317-321. PubMed ID: 29636254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlling Central Carbon Metabolism for Improved Pathway Yields in Saccharomyces cerevisiae.
    Tan SZ; Manchester S; Prather KL
    ACS Synth Biol; 2016 Feb; 5(2):116-24. PubMed ID: 26544022
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lactic acid production from xylose by engineered Saccharomyces cerevisiae without PDC or ADH deletion.
    Turner TL; Zhang GC; Kim SR; Subramaniam V; Steffen D; Skory CD; Jang JY; Yu BJ; Jin YS
    Appl Microbiol Biotechnol; 2015 Oct; 99(19):8023-33. PubMed ID: 26043971
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward "homolactic" fermentation of glucose and xylose by engineered Saccharomyces cerevisiae harboring a kinetically efficient l-lactate dehydrogenase within pdc1-pdc5 deletion background.
    Novy V; Brunner B; Müller G; Nidetzky B
    Biotechnol Bioeng; 2017 Jan; 114(1):163-171. PubMed ID: 27426989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An internal deletion in MTH1 enables growth on glucose of pyruvate-decarboxylase negative, non-fermentative Saccharomyces cerevisiae.
    Oud B; Flores CL; Gancedo C; Zhang X; Trueheart J; Daran JM; Pronk JT; van Maris AJ
    Microb Cell Fact; 2012 Sep; 11():131. PubMed ID: 22978798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic engineering of Saccharomyces cerevisiae for 2,3-butanediol production.
    Kim SJ; Kim JW; Lee YG; Park YC; Seo JH
    Appl Microbiol Biotechnol; 2017 Mar; 101(6):2241-2250. PubMed ID: 28204883
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The glucose-6-phosphate-isomerase reaction is essential for normal glucose repression in Saccharomyces cerevisiae.
    Sierkstra LN; Silljé HH; Verbakel JM; Verrips CT
    Eur J Biochem; 1993 May; 214(1):121-7. PubMed ID: 8508783
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid and stable production of 2,3-butanediol by an engineered Saccharomyces cerevisiae strain in a continuous airlift bioreactor.
    Yamada R; Nishikawa R; Wakita K; Ogino H
    J Ind Microbiol Biotechnol; 2018 May; 45(5):305-311. PubMed ID: 29605870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic pathway engineering for fatty acid ethyl ester production in Saccharomyces cerevisiae using stable chromosomal integration.
    de Jong BW; Shi S; Valle-Rodríguez JO; Siewers V; Nielsen J
    J Ind Microbiol Biotechnol; 2015 Mar; 42(3):477-86. PubMed ID: 25422103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering and systems-level analysis of Saccharomyces cerevisiae for production of 3-hydroxypropionic acid via malonyl-CoA reductase-dependent pathway.
    Kildegaard KR; Jensen NB; Schneider K; Czarnotta E; Özdemir E; Klein T; Maury J; Ebert BE; Christensen HB; Chen Y; Kim IK; Herrgård MJ; Blank LM; Forster J; Nielsen J; Borodina I
    Microb Cell Fact; 2016 Mar; 15():53. PubMed ID: 26980206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production of pyruvate from mannitol by mannitol-assimilating pyruvate decarboxylase-negative Saccharomyces cerevisiae.
    Yoshida S; Tanaka H; Hirayama M; Murata K; Kawai S
    Bioengineered; 2015; 6(6):347-50. PubMed ID: 26588105
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring the genetic control of glycolytic oscillations in Saccharomyces cerevisiae.
    Williamson T; Adiamah D; Schwartz JM; Stateva L
    BMC Syst Biol; 2012 Aug; 6():108. PubMed ID: 22920924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of transcription and translation of glycolytic enzymes in glucose-limited continuous cultures of Saccharomyces cerevisiae.
    Sierkstra LN; Verbakel JM; Verrips CT
    J Gen Microbiol; 1992 Dec; 138(12):2559-66. PubMed ID: 1487726
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.