These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 28080051)

  • 41. Structure and heats of formation of iodine fluorides and the respective closed-shell ions from CCSD(T) electronic structure calculations and reliable prediction of the steric activity of the free-valence electron pair in ClF6-, BrF6-, and IF6-.
    Dixon DA; Grant DJ; Christe KO; Peterson KA
    Inorg Chem; 2008 Jun; 47(12):5485-94. PubMed ID: 18476690
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Benchmark calculations on the adiabatic ionization potentials of M-NH(3) (M=Na,Al,Ga,In,Cu,Ag).
    Li S; Peterson KA; Dixon DA
    J Chem Phys; 2008 Apr; 128(15):154301. PubMed ID: 18433203
    [TBL] [Abstract][Full Text] [Related]  

  • 43. How To Arrive at Accurate Benchmark Values for Transition Metal Compounds: Computation or Experiment?
    Aoto YA; de Lima Batista AP; Köhn A; de Oliveira-Filho AGS
    J Chem Theory Comput; 2017 Nov; 13(11):5291-5316. PubMed ID: 28953375
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Heats of formation of MHxCly (M = Si, P, As, Sb) compounds and main group fluorides from high level electronic structure calculations.
    Vasiliu M; Grant DJ; Feller D; Dixon DA
    J Phys Chem A; 2012 Apr; 116(14):3717-27. PubMed ID: 22397634
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Explicitly correlated composite thermochemistry of transition metal species.
    Bross DH; Hill JG; Werner HJ; Peterson KA
    J Chem Phys; 2013 Sep; 139(9):094302. PubMed ID: 24028112
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Ab initio thermochemistry involving heavy atoms: an investigation of the reactions Hg + IX (X = I, Br, Cl, O).
    Shepler BC; Balabanov NB; Peterson KA
    J Phys Chem A; 2005 Nov; 109(45):10363-72. PubMed ID: 16833332
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Composite thermochemistry of gas phase U(VI)-containing molecules.
    Bross DH; Peterson KA
    J Chem Phys; 2014 Dec; 141(24):244308. PubMed ID: 25554152
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Toward reliable modeling of S-nitrosothiol chemistry: Structure and properties of methyl thionitrite (CH
    Khomyakov DG; Timerghazin QK
    J Chem Phys; 2017 Jul; 147(4):044305. PubMed ID: 28764371
    [TBL] [Abstract][Full Text] [Related]  

  • 49. F+ and F⁻ affinities of simple N(x)F(y) and O(x)F(y) compounds.
    Grant DJ; Wang TH; Vasiliu M; Dixon DA; Christe KO
    Inorg Chem; 2011 Mar; 50(5):1914-25. PubMed ID: 21271710
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Experimental and computational investigation of the group 11-group 2 diatomic molecules: first determination of the AuSr and AuBa bond energies and thermodynamic stability of the copper- and silver-alkaline earth species.
    Ciccioli A; Gigli G; Lauricella M
    J Chem Phys; 2012 May; 136(18):184306. PubMed ID: 22583286
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Thermodynamics of the Metal Carbonates and Bicarbonates of Mn, Co, Ni, Cu, and Zn Relevant to Mineral Energetics.
    Hu Y; Chaka A; Dixon DA
    J Phys Chem A; 2022 Nov; 126(43):7874-7887. PubMed ID: 36265130
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Estimating the intrinsic limit of the Feller-Peterson-Dixon composite approach when applied to adiabatic ionization potentials in atoms and small molecules.
    Feller D
    J Chem Phys; 2017 Jul; 147(3):034103. PubMed ID: 28734295
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Simplified wave function models in thermochemical protocols based on bond separation reactions.
    Bakowies D
    J Phys Chem A; 2014 Dec; 118(50):11811-27. PubMed ID: 25426545
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Calculation of Heats of Formation for Zn Complexes: Comparison of Density Functional Theory, Second Order Perturbation Theory, Coupled-Cluster and Complete Active Space Methods.
    Weaver MN; Merz KM; Ma D; Kim HJ; Gagliardi L
    J Chem Theory Comput; 2013 Dec; 9(12):. PubMed ID: 24409106
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Hybrid coupled cluster methods based on the split virtual orbitals: barrier heights of reactions and spectroscopic constants of open-shell diatomic molecules.
    Kou Z; Shen J; Xu E; Li S
    J Phys Chem A; 2013 Jan; 117(3):626-32. PubMed ID: 23270485
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Variational formulation of perturbative explicitly-correlated coupled-cluster methods.
    Torheyden M; Valeev EF
    Phys Chem Chem Phys; 2008 Jun; 10(23):3410-20. PubMed ID: 18535724
    [TBL] [Abstract][Full Text] [Related]  

  • 57. On the spectroscopic and thermochemical properties of ClO, BrO, IO, and their anions.
    Peterson KA; Shepler BC; Figgen D; Stoll H
    J Phys Chem A; 2006 Dec; 110(51):13877-83. PubMed ID: 17181347
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Explicitly correlated combined coupled-cluster and perturbation methods.
    Shiozaki T; Valeev EF; Hirata S
    J Chem Phys; 2009 Jul; 131(4):044118. PubMed ID: 19655848
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Ionization energies of metallocenes: a coupled cluster study of cobaltocene.
    Aðalsteinsson HM; Bjornsson R
    Phys Chem Chem Phys; 2023 Feb; 25(6):4570-4587. PubMed ID: 36723003
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Extrapolating MP2 and CCSD explicitly correlated correlation energies to the complete basis set limit with first and second row correlation consistent basis sets.
    Hill JG; Peterson KA; Knizia G; Werner HJ
    J Chem Phys; 2009 Nov; 131(19):194105. PubMed ID: 19929044
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.