These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 28081089)

  • 1. Direct comparison of two-dimensional and three-dimensional laser-induced fluorescence measurements on highly turbulent flames.
    Ma L; Lei Q; Capil T; Hammack SD; Carter CD
    Opt Lett; 2017 Jan; 42(2):267-270. PubMed ID: 28081089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-shot volumetric laser induced fluorescence (VLIF) measurements in turbulent flows seeded with iodine.
    Wu Y; Xu W; Lei Q; Ma L
    Opt Express; 2015 Dec; 23(26):33408-18. PubMed ID: 26832005
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of 2D and 3D flame topography measured by planar laser-induced fluorescence and tomographic chemiluminescence.
    Ma L; Wu Y; Xu W; Hammack SD; Lee T; Carter CD
    Appl Opt; 2016 Jul; 55(20):5310-5. PubMed ID: 27409304
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D flame topography obtained by tomographic chemiluminescence with direct comparison to planar Mie scattering measurements.
    Xu W; Wickersham AJ; Wu Y; He F; Ma L
    Appl Opt; 2015 Mar; 54(9):2174-82. PubMed ID: 25968497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Laser imaging system for determination of three-dimensional scalar gradients in turbulent flames.
    Karpetis AN; Settersten TB; Schefer RW; Barlow RS
    Opt Lett; 2004 Feb; 29(4):355-7. PubMed ID: 14971751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous Burst Imaging of Dual Species Using Planar Laser-Induced Fluorescence at 50 kHz in Turbulent Premixed Flames.
    Li Z; Rosell J; Aldén M; Richter M
    Appl Spectrosc; 2017 Jun; 71(6):1363-1367. PubMed ID: 27864444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Volumetric imaging of turbulent reactive flows at kHz based on computed tomography.
    Li X; Ma L
    Opt Express; 2014 Feb; 22(4):4768-78. PubMed ID: 24663795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CH and NO planar laser-induced fluorescence and Rayleigh-scattering in turbulent flames using a multimode optical parametric oscillator.
    Miller JD; Tröger JW; Engel SR; Seeger T; Leipertz A; Meyer TR
    Appl Opt; 2021 Jan; 60(1):98-108. PubMed ID: 33362084
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of laser-induced-fluorescence carbon monoxide measurements in turbulent nonpremixed flames.
    Mokhov AV; Levinsky HB; van der Meij CE; Jacobs RA
    Appl Opt; 1995 Oct; 34(30):7074-82. PubMed ID: 21060569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Instantaneous 3D imaging of highly turbulent flames using computed tomography of chemiluminescence.
    Mohri K; Görs S; Schöler J; Rittler A; Dreier T; Schulz C; Kempf A
    Appl Opt; 2017 Sep; 56(26):7385-7395. PubMed ID: 29048060
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence.
    Ni T; Pinson JA; Gupta S; Santoro RJ
    Appl Opt; 1995 Oct; 34(30):7083-91. PubMed ID: 21060570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visualization of turbulent flame fronts with planar laser-induced fluorescence.
    Kychakoff G; Howe RD; Hanson RK; Drake MC; Pitz RW; Lapp M; Penney CM
    Science; 1984 Apr; 224(4647):382-4. PubMed ID: 17741216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of a CH planar laser-induced fluorescence imaging system using a kHz-rate multimode-pumped optical parametric oscillator.
    Miller JD; Engel SR; Tröger JW; Meyer TR; Seeger T; Leipertz A
    Appl Opt; 2012 May; 51(14):2589-600. PubMed ID: 22614478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Network structure of turbulent premixed flames.
    Singh J; Belur Vishwanath R; Chaudhuri S; Sujith RI
    Chaos; 2017 Apr; 27(4):043107. PubMed ID: 28456168
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flame front detection and characterization using conditioned particle image velocimetry (CPIV).
    Pfadler S; Beyrau F; Leipertz A
    Opt Express; 2007 Nov; 15(23):15444-56. PubMed ID: 19550830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Line Raman, Rayleigh, and laser-induced predissociation fluorescence technique for combustion with a tunable KrF excimer laser.
    Mansour MS; Chen YC
    Appl Opt; 1996 Jul; 35(21):4252-60. PubMed ID: 21102834
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NCO quantitative measurement in premixed low pressure flames by combining LIF and CRDS techniques.
    Lamoureux N; Mercier X; Pauwels JF; Desgroux P
    J Phys Chem A; 2011 Jun; 115(21):5346-53. PubMed ID: 21548555
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultra-high-speed PLIF imaging for simultaneous visualization of multiple species in turbulent flames.
    Wang Z; Stamatoglou P; Li Z; Aldén M; Richter M
    Opt Express; 2017 Nov; 25(24):30214-30228. PubMed ID: 29221053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visualization of CN by the use of planar laser-induced fluorescence in a cross section of an unseeded turbulent CH(4)-air flame.
    Hirano A; Tsujishita M
    Appl Opt; 1994 Nov; 33(33):7777-80. PubMed ID: 20962989
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative imaging of temperature and OH in turbulent diffusion flames by using a single laser source.
    Kelman JB; Masri AR
    Appl Opt; 1994 Jun; 33(18):3992-9. PubMed ID: 20935746
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.