BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 28081256)

  • 21. De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells.
    Berod L; Friedrich C; Nandan A; Freitag J; Hagemann S; Harmrolfs K; Sandouk A; Hesse C; Castro CN; Bähre H; Tschirner SK; Gorinski N; Gohmert M; Mayer CT; Huehn J; Ponimaskin E; Abraham WR; Müller R; Lochner M; Sparwasser T
    Nat Med; 2014 Nov; 20(11):1327-33. PubMed ID: 25282359
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Acetyl-CoA carboxylase inhibitors attenuate WNT and Hedgehog signaling and suppress pancreatic tumor growth.
    Petrova E; Scholz A; Paul J; Sturz A; Haike K; Siegel F; Mumberg D; Liu N
    Oncotarget; 2017 Jul; 8(30):48660-48670. PubMed ID: 27750213
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reversal of diet-induced hepatic steatosis and hepatic insulin resistance by antisense oligonucleotide inhibitors of acetyl-CoA carboxylases 1 and 2.
    Savage DB; Choi CS; Samuel VT; Liu ZX; Zhang D; Wang A; Zhang XM; Cline GW; Yu XX; Geisler JG; Bhanot S; Monia BP; Shulman GI
    J Clin Invest; 2006 Mar; 116(3):817-24. PubMed ID: 16485039
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Targeting de novo lipogenesis as a novel approach in anti-cancer therapy.
    Stoiber K; Nagło O; Pernpeintner C; Zhang S; Koeberle A; Ulrich M; Werz O; Müller R; Zahler S; Lohmüller T; Feldmann J; Braig S
    Br J Cancer; 2018 Jan; 118(1):43-51. PubMed ID: 29112683
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Expression, purification, and characterization of human acetyl-CoA carboxylase 2.
    Kim KW; Yamane H; Zondlo J; Busby J; Wang M
    Protein Expr Purif; 2007 May; 53(1):16-23. PubMed ID: 17223360
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Acetyl-CoA carboxylase inhibition for the treatment of metabolic syndrome.
    Harwood HJ
    Curr Opin Investig Drugs; 2004 Mar; 5(3):283-9. PubMed ID: 15083594
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Design, synthesis and biological evaluation of novel chroman derivatives as non-selective acetyl-CoA carboxylase inhibitors.
    Wei Q; Mei L; Chen P; Yuan X; Zhang H; Zhou J
    Bioorg Chem; 2020 Aug; 101():103943. PubMed ID: 32554277
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spirolactam-based acetyl-CoA carboxylase inhibitors: toward improved metabolic stability of a chromanone lead structure.
    Griffith DA; Dow RL; Huard K; Edmonds DJ; Bagley SW; Polivkova J; Zeng D; Garcia-Irizarry CN; Southers JA; Esler W; Amor P; Loomis K; McPherson K; Bahnck KB; Préville C; Banks T; Moore DE; Mathiowetz AM; Menhaji-Klotz E; Smith AC; Doran SD; Beebe DA; Dunn MF
    J Med Chem; 2013 Sep; 56(17):7110-9. PubMed ID: 23981033
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synthesis and anti-cancer activity of ND-646 and its derivatives as acetyl-CoA carboxylase 1 inhibitors.
    Li EQ; Zhao W; Zhang C; Qin LZ; Liu SJ; Feng ZQ; Wen X; Chen CP
    Eur J Pharm Sci; 2019 Sep; 137():105010. PubMed ID: 31325544
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Diminishing acetyl-CoA carboxylase 1 attenuates CCA migration via AMPK-NF-κB-snail axis.
    Saisomboon S; Kariya R; Boonnate P; Sawanyawisuth K; Cha'on U; Luvira V; Chamgramol Y; Pairojkul C; Seubwai W; Silsirivanit A; Wongkham S; Okada S; Jitrapakdee S; Vaeteewoottacharn K
    Biochim Biophys Acta Mol Basis Dis; 2023 Jun; 1869(5):166694. PubMed ID: 36972768
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synthesis and structure-activity relationships of N-{3-[2-(4-alkoxyphenoxy)thiazol-5-yl]-1- methylprop-2-ynyl}carboxy derivatives as selective acetyl-CoA carboxylase 2 inhibitors.
    Gu YG; Weitzberg M; Clark RF; Xu X; Li Q; Zhang T; Hansen TM; Liu G; Xin Z; Wang X; Wang R; McNally T; Zinker BA; Frevert EU; Camp HS; Beutel BA; Sham HL
    J Med Chem; 2006 Jun; 49(13):3770-3. PubMed ID: 16789734
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Discovery of N-(1-(3-(4-phenoxyphenyl)-1,2,4-oxadiazol-5-yl)ethyl)acetamides as novel acetyl-CoA carboxylase 2 (ACC2) inhibitors with peroxisome proliferator-activated receptor α/δ (PPARα/δ) dual agonistic activity.
    Okazaki S; Noguchi-Yachide T; Sakai T; Ishikawa M; Makishima M; Hashimoto Y; Yamaguchi T
    Bioorg Med Chem; 2016 Nov; 24(21):5258-5269. PubMed ID: 27591006
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optimizing the Benefit/Risk of Acetyl-CoA Carboxylase Inhibitors through Liver Targeting.
    Huard K; Smith AC; Cappon G; Dow RL; Edmonds DJ; El-Kattan A; Esler WP; Fernando DP; Griffith DA; Kalgutkar AS; Ross TT; Bagley SW; Beebe D; Bi YA; Cabral S; Crowley C; Doran SD; Dowling MS; Liras S; Mascitti V; Niosi M; Pfefferkorn JA; Polivkova J; Préville C; Price DA; Shavnya A; Shirai N; Smith AH; Southers JR; Tess DA; Thuma BA; Varma MV; Yang X
    J Med Chem; 2020 Oct; 63(19):10879-10896. PubMed ID: 32809824
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chemical inhibition of acetyl-CoA carboxylase suppresses self-renewal growth of cancer stem cells.
    Corominas-Faja B; Cuyàs E; Gumuzio J; Bosch-Barrera J; Leis O; Martin ÁG; Menendez JA
    Oncotarget; 2014 Sep; 5(18):8306-16. PubMed ID: 25246709
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Oncolytic avian reovirus σA-modulated fatty acid metabolism through the PSMB6/Akt/SREBP1/acetyl-CoA carboxylase pathway to increase energy production for virus replication.
    Hsu CY; Chen YH; Huang WR; Huang JW; Chen IC; Chang YK; Wang CY; Chang CD; Liao TL; Nielsen BL; Liu HJ
    Vet Microbiol; 2022 Oct; 273():109545. PubMed ID: 35998542
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mutant mice lacking acetyl-CoA carboxylase 1 are embryonically lethal.
    Abu-Elheiga L; Matzuk MM; Kordari P; Oh W; Shaikenov T; Gu Z; Wakil SJ
    Proc Natl Acad Sci U S A; 2005 Aug; 102(34):12011-6. PubMed ID: 16103361
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Blood meal drives de novo lipogenesis in the fat body of Rhodnius prolixus.
    Saraiva FB; Alves-Bezerra M; Majerowicz D; Paes-Vieira L; Braz V; Almeida MGMD; Meyer-Fernandes JR; Gondim KC
    Insect Biochem Mol Biol; 2021 Jun; 133():103511. PubMed ID: 33278628
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Decreasing the rate of metabolic ketone reduction in the discovery of a clinical acetyl-CoA carboxylase inhibitor for the treatment of diabetes.
    Griffith DA; Kung DW; Esler WP; Amor PA; Bagley SW; Beysen C; Carvajal-Gonzalez S; Doran SD; Limberakis C; Mathiowetz AM; McPherson K; Price DA; Ravussin E; Sonnenberg GE; Southers JA; Sweet LJ; Turner SM; Vajdos FF
    J Med Chem; 2014 Dec; 57(24):10512-26. PubMed ID: 25423286
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Acetyl-CoA Carboxylase Inhibitor CP640.186 Increases Tubulin Acetylation and Impairs Thrombin-Induced Platelet Aggregation.
    Octave M; Pirotton L; Ginion A; Robaux V; Lepropre S; Ambroise J; Bouzin C; Guigas B; Giera M; Foretz M; Bertrand L; Beauloye C; Horman S
    Int J Mol Sci; 2021 Dec; 22(23):. PubMed ID: 34884932
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ginkgolic acid suppresses the development of pancreatic cancer by inhibiting pathways driving lipogenesis.
    Ma J; Duan W; Han S; Lei J; Xu Q; Chen X; Jiang Z; Nan L; Li J; Chen K; Han L; Wang Z; Li X; Wu E; Huo X
    Oncotarget; 2015 Aug; 6(25):20993-1003. PubMed ID: 25895130
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.